2-Methylpyridine

2-Methylpyridine
Names
Preferred IUPAC name
2-Methylpyridine
Other names
2-Picoline
Identifiers
109-06-8 YesY
3D model (Jmol) Interactive image
ChEBI CHEBI:50415 N
ChemSpider 7687 YesY
ECHA InfoCard 100.003.313
PubChem 7975
Properties
C6H7N
Molar mass 93.13 g/mol
Appearance Faintly yellow-green clear liquid
Density 0.943 g/mL
Melting point −70 °C (−94 °F; 203 K)
Boiling point 128 to 129 °C (262 to 264 °F; 401 to 402 K)
Miscible
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

2-Methylpyridine, or 2-picoline, is the compound described with formula C6H7N. 2-Picoline is a colorless liquid that has an unpleasant odor similar to pyridine. Pyridines including 2-picoline are most crudely prepared by the reaction of acetylene and hydrogen cyanide.

Synthesis

2-Picoline was the first pyridine compound reported to be isolated in pure form. It was isolated from coal tar in 1846 by T. Anderson.[1] It is now mainly produced by two principal routes, the condensation of acetaldehyde, formaldehyde, and ammonia and the cyclization of nitriles and acetylene. One example of such reaction is the combination of acetaldehyde and ammonia:

Approximately 8000 t/a was produced worldwide in 1989.[2]

Uses

The principal application of 2-picoline is as a precursor of 2-vinylpyridine. The formation of 2-vinylpyridine is achieved by the addition of aqueous formaldehyde to 2-picoline, followed by a dehydration of the resulting alcohol:

The copolymerization of 2-vinylpyridine, butadiene and styrene is used as an adhesive for textile tire cord. 2-Picoline is also a precursor to the agrichemical, nitrapyrin, which prevents loss of ammonia from fertilizers.[2]

2-Picoline is a versatile building block and can be used as a precursor to a variety of derivatives. For example, oxidation by potassium permanganate affords picolinic acid:[2]

Environmental Behavior

Like other pyridine derivatives, 2-methylpyridine is often reported as an environmental contaminant associated with facilities processing oil shale or coal, and has also been found at legacy wood treatment sites. Owing to high water solubility, 2-methylpyridine has significant potential for mobility in the environment, which may promote water contamination. The compound is, however, readily degradable by certain microorganisms, such as Arthrobacter sp. strain R1 (ATTC strain number 49987), which was isolated from an aquifer contaminated with a complex mixture of pyridine derivatives.[3] Arthrobacter and closely related Actinobacteria are often found associated with degradation of pyridine derivatives and other nitrogen heterocyclic compounds. 2-methypyridine and 4-methypyridine are more readily degraded and exhibit less volatilization loss from environmental samples than does 3-methypyridine.[4]

References

  1. Anderson, T. (1846). "On the constitution and properties of Picoline, a new organic base from Coal Tar" (Free full text at Google Books). Edinburgh New Phil. J. XLI: 146–156; 291–300.
  2. 1 2 3 Shinkichi Shimizu; Nanao Watanabe; Toshiaki Kataoka; Takayuki Shoji; Nobuyuki Abe; Sinji Morishita; Hisao Ichimura. (2002). "Pyridine and Pyridine Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a22_399.
  3. O'Loughlin, E. J., G.K. Sims, and S.J. Traina. 1999. Biodegradation of 2-methyl, 2-ethyl, and 2-hydroxypyridine by an Arthrobacter sp. isolated from subsurface sediment. Biodegradation 10:93-104.
  4. Sims, G.K.; L.E. Sommers (1985). "Biodegradation of pyridine derivatives in soil suspensions". Environmental Toxicology and Chemistry. 5: 503–509. doi:10.1002/etc.5620050601.
This article is issued from Wikipedia - version of the 9/23/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.