IEEE 802.11ax
802.11 ax is a type of WLAN in the IEEE 802.11 set of types of WLANs. It is designed to improve overall spectral efficiency. It is still in a very early stage of development, but is predicted to have a top speed of around 10 Gbit/s[1] (as tested by Huawei), it works in 2.4 and/or 5 GHz, in addition to MIMO and MU-MIMO it introduces OFDMA technique to improve spectral efficiency and also higher order 1024 QAM modulation support for better throughputs. It is due to be publicly released in 2019.
Rate Set
MCS index[lower-alpha 1] |
Modulation type |
Coding rate |
Data rate (in Mbit/s)[lower-alpha 2] | |||||||
---|---|---|---|---|---|---|---|---|---|---|
20 MHz channels | 40 MHz channels | 80 MHz channels | 160 MHz channels | |||||||
1600 ns GI[lower-alpha 3] | 800 ns GI | 1600 ns GI | 800 ns GI | 1600 ns GI | 800 ns GI | 1600 ns GI | 800 ns GI | |||
0 | BPSK | 1/2 | 4 | 4 | 8 | 9 | 17 | 18 | 34 | 36 |
1 | QPSK | 1/2 | 16 | 17 | 33 | 34 | 68 | 72 | 136 | 144 |
2 | QPSK | 3/4 | 24 | 26 | 49 | 52 | 102 | 108 | 204 | 216 |
3 | 16-QAM | 1/2 | 33 | 34 | 65 | 69 | 136 | 144 | 272 | 282 |
4 | 16-QAM | 3/4 | 49 | 52 | 98 | 103 | 204 | 216 | 408 | 432 |
5 | 64-QAM | 2/3 | 65 | 69 | 130 | 138 | 272 | 288 | 544 | 576 |
6 | 64-QAM | 3/4 | 73 | 77 | 146 | 155 | 306 | 324 | 613 | 649 |
7 | 64-QAM | 5/6 | 81 | 86 | 163 | 172 | 340 | 360 | 681 | 721 |
8 | 256-QAM | 3/4 | 98 | 103 | 195 | 207 | 408 | 432 | 817 | 865 |
9 | 256-QAM | 5/6 | 108 | 115 | 217 | 229 | 453 | 480 | 907 | 961 |
10 | 1024-QAM | 3/4 | 122 | 129 | 244 | 258 | 510 | 540 | 1021 | 1081 |
11 | 1024-QAM | 5/6 | 135 | 143 | 271 | 287 | 567 | 600 | 1134 | 1201 |
Notes
References
- ↑ "What is 802.11ax WiFi, and will it really deliver 10Gbps? (updated) | ExtremeTech". ExtremeTech. Retrieved 2016-01-01.
Further reading
- "Are you ready for the next chapter of Wi-Fi? Meet 802.11ax"
- Bellalta, Boris (2015). "IEEE 802.11ax: High-Efficiency WLANs,". arXiv:1501.01496v4.
This article is issued from Wikipedia - version of the 10/20/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.