Backplate and wing

Backplate and wing

A stainless steel backplate, wing and manifolded twinset
Uses Scuba harness and buoyancy compensator
Related items Buoyancy compensator (diving)

A backplate and wing (often abbreviated as BP&W or BP/W) is a type of scuba harness with an attached buoyancy compensation device (BCD) which establishes neutral buoyancy underwater and positive buoyancy on the surface. Unlike most other BCDs, the backplate and wing is a modular system, in that it consists of separable components. The core components of this system are:

Configuration

Harness

The basic harness comprises two lengths of 2" (50mm) webbing: One is woven through the slots in the backplate to form closed shoulder loops and an open waist strap, with a weightbelt-type lever action buckle for securing the waist strap,

The second section of webbing forms a crotch strap, running from the bottom of the backplate, between the diver’s legs, and up to the waist strap, which would be passed through a loop at the front end of the crotch strap. This harness is sometimes referred to as a one-piece harness, due to the shoulder and waist straps being made from a single piece of webbing.

The harness is usually fitted with stainless steel D-rings secured by stainless steel "sliders", small slotted plates which hold their position by friction. A loop of elastic cord is normally attached at the same place as the left shoulder D-ring, to secure the wing’s inflator hose.

This arrangement is extremely rugged, reliable and hard-wearing.[1]

This form of harness may be adjusted to fit different builds of diver by shortening the webbing used to tighten the harness, or installing a new longer section of webbing to loosen the harness. Once adjusted, some flexibility is still allowed by positioning the buckle, which can change the effective length of the waist strap depending on where it is secured.

The harness webbing can be replaced at home with no special tools when the webbing wears through or is damaged, and other components can be easily replaced. This makes this style of harness very economical over the long term.

Harness accessories

Many variations to this basic harness are used, and these may include:

Some manufacturers offer alternative harnesses, often marketed as “deluxe” options, which may include the above variations.

Omitting the buoyancy bladder reduces the setup to a plain backpack harness if the breathing set needs to be used on land. However, the standard scuba backplate is ergonomically unsuited to this function.

Backplate

The backplate is usually made from a single piece of stainless steel or anodised aluminium, bent along four lines to form a channel running vertically down the center. The plate is about 15” (38 cm) long and 10” (25 cm) wide. There are two slots near each of the shoulders and hips, where the harness passes through, and another slot at the bottom of the plate where the crotch strap attaches. There is also one or more pairs of holes in the channel to be used for cylinder attachment; the holes of each pair are 11” apart.

A variation on this plan uses another two parallel bends to form a flat trough down the back of the central channel, which stabilises a single cylinder strapped to the centreline.

Steel backplates are commonly used when the buoyancy of the diver’s other equipment (primarily cylinders and exposure protection) would need a weightbelt, as the negative buoyancy of the steel plate can replace some of this weight. Aluminium backplates are commonly used when the diver would not require a weightbelt (such as when wearing heavy steel cylinders) or when the mass of the backplate must be kept low for air travel. Backplates are occasionally made from other materials, including carbon fibers, titanium, and ABS plastic.

Lightweight versions of the backplate are available with inessential areas cut away to reduce the weight. When taken to the extreme, a single cylinder is used as the longitudinal stiffener, and the backplate is reduced to a skeletal frame at the level of the waist belt, which stabilizes the cylinder against rolling on the diver's back.

Wing

The wing is an inflatable buoyancy bladder, similar to that in other varieties of BCD, except that it is not in or permanently attached to the harness part of a BCD. As with other BCDs, wings have an inflation valve on a corrugated hose, dump valve, and over pressure valve. Wings are usually oval (annular, doughnut or toroidal) or U-shaped (horseshoe), and are designed to wrap slightly around the diving cylinder(s) when inflated.

Wings are usually designed to be used with either a single diving cylinder or twin cylinders, although some manufacturers make wings that they recommend for both single and twin cylinder diving. Single-cylinder wings are most commonly oval-shaped and are relatively narrow, and twin-cylinder wings are more likely to be U-shaped and are wider.

Some wings, known as bungee wings, incorporate elastic to constrain the wing when it is less than completely full and accelerate air dumping. These wings usually have elastic bands or cords wrapping the bladder area, but some designs use an elasticised shell or cords along a bellows fold gusset. Arguments for and against are:

Some manufacturers, such as OMS and Dive Rite make both and let the purchaser choose which style they prefer. The style which uses elastic only on the side gussets is more streamlined and smoother than the full wrap bungee style.

Another variety, the dual bladder wing, contains a second, redundant bladder and inflation assembly, with the second bladder being intended for use if the primary bladder fails, either through a puncture, or through an inflation valve failing. Some technical divers may choose a dual bladder wing to have backup redundancy if the primary bladder fails. Detractors of this arrangement point out that if the extra bladder is inadvertently inflated, the diver may not realise that this has occurred, and it may result in an uncontrolled buoyant ascent. This risk may be reduced by having only oral inflation for the backup wing, or requiring the same inflator hose to be used for both wings, and having the backup bladder inflation on the opposite side to the primary bladder.

The wing may be a single or double skin unit. A single skin wing uses the same material for structure and holding the air, while a double skin arrangement uses an airtight bladder in a structural casing of strong but porous textile. Single skin construction is simpler, and usually uses RF welding to make the seams. These bladders are usually lighter and dry out more quickly than double skin wings, but if the bladder is punctured, a new bladder is relatively easily fitted to a double skin wing, while repair of the single skin bladder may not be practicable, depending on material and construction details. Single skin wings are also easier to decontaminate, particularly if the outer surface is smooth. Single skin wings may use a bellows fold gusset to increase inflatable volume while retaining a relatively compact outline. This can reduce drag while swimming when the bladder is deflated.

Cylinder attachment

When a backplate is used with a single cylinder, a single tank adapter, or STA, is usually used. The STA is a small metal structure that bolts onto the backplate on the outside of the wings, contains two camstraps, and accommodates the cylinder.

In some instances, the STA may be omitted, and the camstraps threaded through the wing and backplate. In these cases, the wing will contain a built-in STA in the form of two rods or pads which stabilise the cylinder, or the backplate may be made with a slight channel in the central ridge to hold the single cylinder.

Twin cylinders are usually attached to the backplate via bolts, passing through the cylinder bands, and secured by nuts in the central channel of the backplate. An alternative is to use two sets of camstraps and extra slots in the backplate and wing. This arrangement will allow convenient attachment of independent cylinders of almost any size without use of cylinder bands.

Some rebreather divers fit backplates to their rebreathers. The exact method of attachment varies between users and rebreather models, and may include modification to the rebreather or using a customised backplate. Some rebreathers are designed specifically for use with backplates.

Ancillary equipment

The backplate and wing is an extremely minimalistic system, however it does facilitate addition of other equipment. Ancillary equipment, commonly attached to the backplate and wing includes:

Much of this equipment is difficult or impossible to attach to many makes or other styles of BCD.

Images

Differences from other styles of BCD

The predominant type of BCD currently used in recreational diving is the jacket style BCD. The backplate and wing differs from the jacket style primarily in the way that the functions required of a BCD (attachment to diver, buoyancy control and attachment to cylinder(s)) are performed by distinct components, rather than a single unit. The most significant effects of this division are shifting the buoyancy bladder from the diver’s chest to his back and the modularity of the system, allowing buoyancy cells, harnesses, and plates to be interchanged as needed. The buoyancy of a backplate is often significantly negative, especially when the plate is made from stainless steel, and so can replace some of the weight that would otherwise be worn on a weightbelt. Ancillary features that would often be present in jacket BCDs, such as pockets or weight integration, are not found in the core system of a backplate and wing, but can be added as additional components if desired.

Other types of BCD exist which more resemble backplate and wing BCD. Back-inflation BCDs are similar in construction to jacket BCDs, except for where the buoyancy cell is. In a back-inflation BCD, as with a backplate and wing, the cell is behind the diver’s back, and is of similar shape to a wing, but a back-inflation BCD usually does not have the modularity of a backplate and wing, although some models let buoyancy cells be substituted.

Softpack BCDs are another style closer still to backplate and wing BCDs. Softpacks, like backplates, are designed to be modular, and are often marketed towards technical divers. A softpack consists of a padded semi-rigid section that serves that same purpose as a backplate, and uses a harness that is either replaceable, like a backplate harness, or permanently fixed. Softpacks may be used with the same models of wings that are used with backplates. The primary differences between these and backplates are the lack of a rigid plate and possible non-separability of the softpack and harness.

A minimalist form of softpack harness sometimes known as the "Capepac" is a set of webbing straps much like that of the backplate, but with a webbing strap instead of the plate. This strap may be formed by stitching or threading through sliders a double layer of webbing with slots between the layers which the cambands pass through, and the wing is sandwiched between harness and cylinder. There is no need for a plate, as the cylinder forms the rigid part of the assembly. This arrangement is best suited to single cylinders, and can be made very compact and light for travelling. In some cases a stabiliser plate may be included at the base of the vertical strap, and the harness shoulder and waistband straps thread through this as is done on the standard backplate.


See also

References

  1. 1 2 Jablonski, Jarrod (2006). "Details of DIR Equipment Configuration". Doing it Right: The Fundamentals of Better Diving. High Springs, Florida: Global Underwater Explorers. ISBN 0-9713267-0-3.
This article is issued from Wikipedia - version of the 9/10/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.