Davey–Stewartson equation

In fluid dynamics, the Davey–Stewartson equation (DSE) was introduced in a paper by Davey & Stewartson (1974) to describe the evolution of a three-dimensional wave-packet on water of finite depth.

It is a system of partial differential equations for a complex (wave-amplitude) field and a real (mean-flow) field :

The DSE is an example of a soliton equation in 2+1 dimensions. The corresponding Lax representation for it is given in Boiti, Martina & Pempinelli (1995).

In 1+1 dimensions the DSE reduces to the nonlinear Schrödinger equation

Itself, the DSE is the particular reduction of the Zakharov–Schulman system. On the other hand, the equivalent counterpart of the DSE is the Ishimori equation.

The DSE is the result of a multiple-scale analysis of modulated nonlinear surface gravity waves, propagating over a horizontal sea bed.

See also

References

External links

This article is issued from Wikipedia - version of the 3/5/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.