Engineering analysis

Engineering analysis involves the application of scientific analytic principles and processes to reveal the properties and state of a system, device or mechanism under study. Engineering analysis is decompositional: it proceeds by separating the engineering design into the mechanisms of operation or failure, analysing or estimating each component of the operation or failure mechanism in isolation, and re-combining the components according to basic physical principles and natural laws.[1][2][3][4]

Remote Systems

Engineering analysis is the primary method for predicting and handling issues with remote systems such as satellites and rovers. Engineering analysis for remote systems must be ongoing since the health and safety of the remote system can only be affected remotely (and because any failure could have fatal consequences). The capabilities of engineering analysis therefore must incorporate trending as well as analysis. Trending should be proactive, predictive, comprehensive and automated. Analysis must be reactive, investigative, targeted and hands-on. Together trending and analysis allow operators to both predict potential situations and identify anomalous events that threaten a remote system.

See also

References

  1. Baecher, G.B., Pate, E.M., and de Neufville, R. (1979) “Risk of dam failure in benefit/cost analysis”, Water Resources Research, 16(3), 449-456.
  2. Hartford, D.N.D. and Baecher, G.B. (2004) Risk and Uncertainty in Dam Safety. Thomas Telford
  3. International Commission on Large Dams (ICOLD) (2003) Risk Assessment in Dam Safety Management. ICOLD, Paris
  4. British Standards Institution (BSI) (1991)BC 5760 Part 5: Reliability of systems equipment and components - Guide to failure modes effects and criticality analysis (FMEA and FMECA).
This article is issued from Wikipedia - version of the 6/30/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.