MeNZB
Vaccine description | |
---|---|
Target disease | group B meningococcus strain |
Type | Subunit |
Clinical data | |
Routes of administration | Injected |
ATC code | J07AH06 (WHO) |
Legal status | |
Legal status |
|
Identifiers | |
ChemSpider | none |
(verify) |
MeNZB was a vaccine against a specific strain of group B meningococcus,[1] used to control an epidemic of meningococcal disease in New Zealand. Most people are able to carry the meningococcus bacteria safely with no ill effects. However, meningococcal disease can cause meningitis and septicaemia, resulting in brain damage, failure of various organs, severe skin and soft-tissue damage, and death.
Immunisation with MeNZB requires three doses, administered approximately six weeks apart (except in newborns, who have them in conjunction with their 6-week, 3-month and 5-month injections). People who have been fully immunised may still carry the meningococcus bacteria and may still contract meningococcal disease.
Components
Each dose is 0.5 ml and contains:
- 25 mcg of outer membrane vesicles from the Neisseria meningitidis group B strain NZ98/254. The vaccine does not contain any whole bacteria (alive or dead). The "outer membrane vesicles" it contains are a small part of the "skin" of the bacteria that let the immune system recognise and prepare for being infected with the real thing. MeNZB vaccine does not contain any human, blood, or bovine (cow)products, egg products, neomycin or the preservative thiomersal (mercury). There are no live meningococcal bacteria in the vaccine and it is not possible to catch the disease or become a carrier of the disease from the vaccine.
- 1.65 mg of aluminium hydroxide (an adjuvant). The immune system will normally not mount an immune response to the outer membrane vesicles if they are presented alone. The presence of the adjuvant forces the immune system to respond to the membrane vesicles by acting to prevent their breakdown and elimination, while causing local tissue damage to provoke the desired immune reaction.
- histidine (to stabilise the pH). The histidine pH buffer is to ensure the vaccine stays as close as possible to the pH of human body fluids. This is to ensure the immune system does not waste time trying to neutralise the vaccine instead of responding to the outer membrane vesicles.
- normal saline. The saline (sterile salt and water) is also like packaging. It is required so that all of the above can be dissolved into a solution that can be injected. It is the same salinity (saltiness) as normal human body fluid.
The antigen in MeNZB is prepared from B:4:P1.7b,4 (NZ 98/254 ) N. meningitidis strain, grown in a fermentor. The bacteria are grown in a synthetic culture medium containing sugar, essential amino acids and essential elements such as iron and potassium. The fermentation does not use bovine or porcine products. The cellular outer membranes are extracted with the detergent deoxycholate, which kills the bacteria. Outer membrane vesicles are purified out of the culture medium by ultracentrifugation, stabilised by histidine and then adsorbed to aluminium hydroxide Al(OH)3 as an adjuvant. Purification is achieved by ultrafiltration/diafiltration.
Impact
Since its introduction the vaccine has had a dramatic impact on the meningitis epidemic that broke out in 2004.[2] In April 2008 it was announced by the New Zealand Ministry of Health that the MeNZB vaccination programme will be completed by 31 December 2008, and that after this period vaccination would require authorization of a GP. Reasons given for this halt of the programme include that the epidemic was coming to an end, and that immune protection given by the vaccine is only short-term.[3] Others speculate that the cost of providing the vaccine is too high for the NZ government to justify. The primary analysis estimated MeNZB to have an effectiveness of 77% after 3 doses and a mean follow-up time of 3.2 years.[4]
The vaccine, originally developed in Norway and subject to considerable public controversy as recently as October 2007, was never released for widespread use in that country because the Norwegian epidemic was finishing before it was released.
References
- ↑ Loring BJ, Turner N, Petousis-Harris H (November 2008). "MeNZB vaccine and epidemic control: when do you stop vaccinating?". Vaccine. 26 (47): 5899–904. doi:10.1016/j.vaccine.2008.08.062. PMID 18804134.
- ↑ Holst J, Martin D, Arnold R, et al. (June 2009). "Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis". Vaccine. 27 Suppl 2: B3–12. doi:10.1016/j.vaccine.2009.04.071. PMID 19481313.
- ↑ Ministry of Health statement, http://www.health.govt.nz/news-media/media-releases/menzb-vaccine-helped-curb-epidemic
- ↑ Meningococcal: New Insights for the Healthcare Professional: 2012 Edition: ScholarlyBrief. ScholarlyEditions. 10 December 2012. pp. 51–. ISBN 978-1-4649-7337-6.
External links
- New Zealand Ministry of Health immunisation information.
- Immunisation Advisory Centre, University of Auckland. Evidence based information on meningococcal disease and MeNZB vaccine.
- MeNZB information from vaccine manufacturer Chiron's website.
- News article: The Meningococcal Gold Rush - An untested and experimental vaccine
- New Zealand Ministry of Health response to article linked above
- Press release: Minister Misleads Kim Hill and Public on MeNZB(tm)
- Press release: Increased Vaccine Risk in Pre-Schoolers - Explain
- Response to press release linked above: Unethical anti-science scaremongering
- Press release: MeNZB(tm) Vaccination Campaign Starts Derailing
- News article: Officials praise meningococcal B vaccine coverage
- TV news item covering vaccination campaign
- Ruling on complaint about TV news item covering vaccination campaign (linked above)
- News article: Adverts inform parents on vaccine
- Press release: MeNZB Early Indications Graph