Natural uranium

Natural uranium (NU, Unat[1]) refers to uranium with the same isotopic ratio as found in nature. It contains 0.711% uranium-235, 99.284% uranium-238, and a trace of uranium-234 by weight (0.0055%). In terms of the amount of radioactivity, approximately 2.2% comes from uranium-235, 48.6% uranium-238, and 49.2% uranium-234.

Natural uranium can be used to fuel both low- and high-power nuclear reactors. Historically, graphite-moderated reactors and heavy water-moderated reactors have been fueled with natural uranium in the pure metal (U) or uranium dioxide (UO2) ceramic forms. However, experimental fuelings with uranium trioxide (UO3) and triuranium octaoxide, (U3O8) have shown promise.[2]

The 0.72% uranium-235 is not sufficient to produce a self-sustaining critical chain reaction in light water reactors or nuclear weapons; these applications must use enriched uranium. Nuclear weapons take a concentration of 90% uranium-235, and light water reactors require a concentration of roughly 3% uranium-235.[3] Unenriched natural uranium is appropriate fuel for a heavy-water reactor, like a CANDU reactor.

In rare occasions, earlier in geologic history when uranium-235 was more abundant, uranium ore was found to have naturally engaged in fission, forming natural nuclear fission reactors. Uranium-235 decays at a faster rate (half-life of 700 million years) compared to uranium-238, which decays extremely slowly (half-life of 4.5 billion years). Therefore, a billion years ago, there was more than double the uranium-235 compared to now.

During the Manhattan Project, the name Tuballoy was used to refer to natural uranium in the refined condition; this term is still in occasional use. Uranium was also called codenamed "X-Metal" during World War II. Similarly, enriched uranium was referred to as Oralloy (Oak Ridge alloy), and depleted uranium was referred to as Depletalloy (depleted alloy).

See also

References

  1. "Nuclear Fuel Cycle Overview". World Nuclear Association. October 2014. Retrieved 2014-10-15.
  2. Oak Ridge National Laboratory (ed.). "Design Parameters for a Natural Uranium UO3- or U3O8-Fueled Nuclear Reactor" (PDF).
  3. Loveland, W.; Morrissey, D.J.; Seaborg, G.T. (2006). "Chapter 16 Nuclear Reactor Chemistry". Modern Nuclear Chemistry (PDF).

External links

This article is issued from Wikipedia - version of the 8/19/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.