Pressure-sensitive adhesive

Pressure-sensitive adhesive (PSA, self-adhesive, self-stick adhesive) is adhesive which forms a bond when pressure is applied to marry the adhesive with the adherend. No solvent, water, or heat is needed to activate the adhesive. It is used in pressure-sensitive tapes, labels, glue dots, note pads, automobile trim, and a wide variety of other products.

As the name "pressure-sensitive" indicates, the degree of bond is influenced by the amount of pressure which is used to apply the adhesive to the surface.

Surface factors such as smoothness, surface energy, removal of contaminants, etc. are also important to proper bonding.

PSAs are usually designed to form a bond and hold properly at room temperatures. PSAs typically reduce or lose their tack at low temperatures and reduce their shear holding ability at high temperatures; special adhesives are made to function at high or low temperatures. It is important to choose an adhesive formulation which is designed for its intended use conditions.

Structural and pressure-sensitive adhesives

Adhesives may be broadly divided in two classes: structural and pressure-sensitive. To form a permanent bond, structural adhesives harden via processes such as evaporation of solvent (for example, white glue), reaction with UV radiation (as in dental adhesives), chemical reaction (such as two part epoxy), or cooling (as in hot melt). In contrast, pressure-sensitive adhesives (PSAs) form a bond simply by the application of light pressure to marry the adhesive with the adherend. Pressure-sensitive adhesives are designed with a balance between flow and resistance to flow. The bond forms because the adhesive is soft enough to flow, or wet, the adherend. The bond has strength because the adhesive is hard enough to resist flow when stress is applied to the bond. Once the adhesive and the adherend are in proximity, there are also molecular interactions such as van der Waals forces involved in the bond, which contribute significantly to the ultimate bond strength. PSAs exhibit viscoelastic (viscous and elastic) properties, both of which are used for proper bonding.

In contrast with structural adhesives, whose strength is evaluated as lap shear strength, pressure-sensitive adhesives are characterized by their shear and peel resistance as well as their initial tack. These properties are dependent, among other things, on the formulation, coating thickness, rub-down and temperature.

Applications

Pressure-sensitive adhesives are designed for either permanent or removable applications. Examples of permanent applications include safety labels for power equipment, foil tape for HVAC duct work, automotive interior trim assembly, and sound/vibration damping films. Some high performance permanent PSAs exhibit high adhesion values and can support kilograms of weight per square centimeter of contact area, even at elevated temperature. Permanent PSAs may be initially removable (for example to recover mislabeled goods) and build adhesion to a permanent bond after several hours or days.

Removable adhesives are designed to form a temporary bond, and ideally can be removed after months or years without leaving residue on the adherend. Removable adhesives are used in applications such as surface protection films, masking tapes, bookmark and note papers, price marking labels, promotional graphics materials, and for skin contact (wound care dressings, EKG electrodes, athletic tape, analgesic and transdermal drug patches, etc.). Some removable adhesives are designed to repeatedly stick and unstick. They have low adhesion and generally cannot support much weight.

Manufacture

Pressure-sensitive adhesives are manufactured with either a liquid carrier or in 100% solid form. Articles such as tapes and labels are made from liquid PSAs by coating the adhesive on a support and evaporating the organic solvent or water carrier, usually in a hot air dryer. The dry adhesive may be further heated to initiate a cross-linking reaction and increase molecular weight. 100% solid PSAs may be low viscosity polymers that are coated and then reacted with radiation to increase molecular weight and form the adhesive (radiation cured PSA); or they may be high-viscosity materials that are heated to reduce viscosity enough to allow coating, and then cooled to their final form (hot melt PSA, HMPSA).

Composition

PSAs are usually based on an elastomer compounded with a suitable tackifier (e.g., a rosin ester). The elastomers can be based on:

See also

Further reading

References

This article is issued from Wikipedia - version of the 11/15/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.