Moment problem

In mathematics, a moment problem arises as the result of trying to invert the mapping that takes a measure μ to the sequences of moments

More generally, one may consider

for an arbitrary sequence of functions Mn.

Introduction

In the classical setting, μ is a measure on the real line, and M is the sequence { xn : n = 0, 1, 2, ... }. In this form the question appears in probability theory, asking whether there is a probability measure having specified mean, variance and so on, and whether it is unique.

There are three named classical moment problems: the Hamburger moment problem in which the support of μ is allowed to be the whole real line; the Stieltjes moment problem, for [0, +); and the Hausdorff moment problem for a bounded interval, which without loss of generality may be taken as [0, 1].

Existence

A sequence of numbers mn is the sequence of moments of a measure μ if and only if a certain positivity condition is fulfilled; namely, the Hankel matrices Hn,

should be positive semi-definite. This is because a positive-semidefinite Hankel matrice corresponds to a linear functional such that and (non-negative for sum of squares of polynmials). Assume can be extended to . In the univariate case, a non-negative polynomial can always be written as a sum of squares. So the linear functional is positive for all the non-negative polynomials in the univariate case. By Haviland theorem, the linear functional has a measure form, that is . A condition of similar form is necessary and sufficient for the existence of a measure supported on a given interval [a, b].

One way to prove these results is to consider the linear functional that sends a polynomial

to

If mkn are the moments of some measure μ supported on [a, b], then evidently

φ(P)  0 for any polynomial P that is non-negative on [a, b].

 

 

 

 

(1)

Vice versa, if (1) holds, one can apply the M. Riesz extension theorem and extend to a functional on the space of continuous functions with compact support C0([a, b]), so that

.

 

 

 

 

(2)

By the Riesz representation theorem, (2) holds iff there exists a measure μ supported on [a, b], such that

for every ƒ  C0([a, b]).

Thus the existence of the measure is equivalent to (1). Using a representation theorem for positive polynomials on [a, b], one can reformulate (1) as a condition on Hankel matrices.

See Shohat & Tamarkin 1943 and Krein & Nudelman 1977 for more details.

Uniqueness (or determinacy)

The uniqueness of μ in the Hausdorff moment problem follows from the Weierstrass approximation theorem, which states that polynomials are dense under the uniform norm in the space of continuous functions on [0, 1]. For the problem on an infinite interval, uniqueness is a more delicate question; see Carleman's condition, Krein's condition and Akhiezer (1965).

Variations

An important variation is the truncated moment problem, which studies the properties of measures with fixed first k moments (for a finite k). Results on the truncated moment problem have numerous applications to extremal problems, optimisation and limit theorems in probability theory. See also: Chebyshev–Markov–Stieltjes inequalities and Krein & Nudelman 1977.

See also

References

This article is issued from Wikipedia - version of the 6/22/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.