Public awareness of science
Public awareness of science (PAwS), public understanding of science (PUS), or more recently, Public Engagement with Science and Technology (PEST) are terms relating to the attitudes, behaviours, opinions, and activities that comprise the relations between the general public or lay society as a whole to scientific knowledge and organisation. It is a comparatively new approach to the task of exploring the multitude of relations and linkages science, technology, and innovation have among the general public. While earlier work in the discipline had focused on augmenting public knowledge of scientific topics, in line with the information deficit model of science communication, the discrediting of the model has led to an increased emphasis on how the public chooses to use scientific knowledge and on the development of interfaces to mediate between expert and lay understandings of an issue.
Major themes
The area integrates a series of fields and themes such as:
- Science communication in the mass media, Internet, radio and television programmes
- Science museums, aquaria, planetaria, zoological parks, botanical gardens, etc.
- Public controversies over science and technology
- Fixed and mobile science exhibits
- Science festivals
- Science fairs in schools and social groups
- Science education for adults
- Science and social movements
- Media and science (medialisation of science)
- Consumer education
- Citizen science
- Public tours of research and development (R&D) parks, manufacturing companies, etc.
- Science in popular culture
- Science in text books and classrooms
- Science and art
How to raise public awareness and public understanding of science and technology, and how the public feels and knows about science in general, and specific subjects, such as genetic engineering, bioethics, etc., are important lines of research in this area.
The Bodmer report
The publication of the Royal Society's' report The Public Understanding of Science[1] (or Bodmer Report) in 1985 is widely held to be the birth of the Public Understanding of Science movement in Britain.[2] The report led to the foundation of the Committee on the Public Understanding of Science and a cultural change in the attitude of scientists to outreach activities.[3]
The contextualist model
In the 1990s, a new perspective emerged in the field with the classic study of Cumbrian Sheep Farmers' interaction with the Nuclear scientists in England, where Brian Wynne demonstrated how the experts were ignorant or disinterested in taking into account the lay knowledge of the sheep farmers while conducting field experiments on the impact of the Chernobyl Nuclear fall out on the sheep in the region.[4] Because of this shortcoming from the side of the scientists, local farmers lost their trust in them. The experts were unaware of the local environmental conditions and the behaviour of sheep and this has eventually led to the failure of their experimental models. Following this study, scholars have studies similar micro-sociological contexts of expert-lay interaction and proposed that the context of knowledge communication is important to understand public engagement with science. Instead of large scale public opinion surveys, researchers proposed studies informed by Sociology of Scientific Knowledge (SSK). The contextualist model focuses on the social impediments in the bidirectional flow of scientific knowledge between experts and laypersons/communities.
The deliberative turn
The scholarly debate on public engagement with science developed further into analyzing the deliberations on science through various institutional forms, with the help of the theory of deliberative democracy. Public deliberation of and participation in science practiced through public spheres became a major emphasis. Scholars like Sheila Jasanoff argues for wider public deliberation on science in democratic societies which is a basic condition for decision making regarding science and technology.[5] There are also attempts to develop more inclusive participatory models of technological governance in the form of consensus conferences, citizen juries, extended peer reviews, and deliberative mapping.[6]
Project examples
Government- and private-led campaigns and events, such as Dana Foundation's "Brain Awareness Week," are becoming a strong focus of programmes which try to promote public awareness of science.
The UK PAWS Foundation dramatically went as far as establishing a Drama Fund with the BBC in 1994. The purpose was to encourage and support the creation of new drama for television, drawing on the world of science and technology.[7]
The Vega Science Trust[8] was set up in 1994 to promote science through the media of television and the internet with the aim of giving scientists a platform from which to communicate to the general public.
The Simonyi Professorship for the Public Understanding of Science chair at The University of Oxford was established in 1995 for the ethologist Richard Dawkins[9] by an endowment from Charles Simonyi. Mathematician Marcus du Sautoy has held the chair since Dawkins' retirement in 2008.[10] Similar professorships have since been created at other British universities. Professorships in the field have been held by well-known academics including Richard Fortey and Kathy Sykes at the University of Bristol, Brian Cox at Manchester University, Tanya Byron at Edge Hill University, Jim Al-Khalili at the University of Surrey and Alice Roberts at the University of Birmingham.
See also
- British Association for the Advancement of Science* Citizen science
- Coalition on the Public Understanding of Science
- People's Science Movement (PSMs)
- Science festival
- Science journalism
- Science museum
- Science studies
- Science outreach
- Science, technology and society
- Scientific literacy
- Sense About Science, encouraging evidence-based approach to scientific and technological developments
- Sociology of scientific knowledge
- This Week in Science, popular science podcast developed around improving public awareness in science
- Science and Technology Studies in India
References
- ↑ The Royal Society. "The Public Understanding of Science". The Royal Society. Retrieved 11 October 2015.
- ↑ http://www.wellcome.ac.uk/doc_WTD004707.html[]
- ↑ "House of Lords - Science and Technology - Third Report". parliament.uk.
- ↑ Wynne, Brian (1996). "Misunderstood Misunderstandings: Social Identities and the Public Uptake of Science". In Alan Irwin and Brian Wynne. Misunderstanding Science? The Public Reconstruction of Science and Technology. Cambridge: Cambridge University Press. pp. 19–46.
- ↑ Jasanoff, Sheila (2003). "Breaking the Waves in Science Studies: Comment on H.M. Collins and Robert Evans, 'The Third Wave of Science Studies'". Social Studies of Science. 33 (3): 389–400. doi:10.1177/03063127030333004.
- ↑ Lövbrand, Eva, Roger Pielke, Jr. and Silke Beck (2011). "A Democracy Paradox in Studies of Science and Technology". Science, Technology and Human Values. 36 (4): 474–496. doi:10.1177/0162243910366154.
- ↑ "PAWS off science?". Physics Education. 33 (1). January 1998. doi:10.1088/0031-9120/33/1/011.
- ↑ "The Vega Science Trust - Science Video - Homepage". vega.org.uk.
- ↑ "Professor Richard Dawkins - The Simonyi Professorship". ox.ac.uk.
- ↑ "Professor Marcus du Sautoy - The Simonyi Professorship". ox.ac.uk.
Further reading
- Bensaude-vincent, Bernadette (2001). "A Genealogy of the Increasing Gap between Science and the Public". Public Understanding of Science. 10 (1): 99–113. doi:10.1088/0963-6625/10/1/307.
- Bijker, Wiebe E., Bal, Roland and Hendriks, Ruud. 2009. The Paradox of Scientific Authority: The Role of Scientific Advice in Democracies. Cambridge and London: The MIT Press.
- Bucchi, Massimiano (1996). "When Scientists Turn to the Public: Alternative Routes in Science Communication". Public Understanding of Science. 5 (4): 375–394.
- Dash, Biswanath (2014a). "Public Understanding of Cyclone Warning in India: Can Wind be Predicted?". Public Understanding of Science. 24 (8): 1–18.
- Davenport, Sally and Leitch, Shirley. 2005. “Agoras, Ancient and Modern, and a Framework for Science-Society Debate”, Science and Public Policy 32(2), April, pp. 137–153.
- Dryzek, John S. 2000. Deliberative Democracy and Beyond: Liberals, Critics, Contestations. New York and Oxford: Oxford University Press.
- Felt, Ulrike; Fochler, Maximilian (2010). "Machineries for Making Publics: Inscribing and De-scribing Publics in Public Engagement". Minerva. 48 (3): 219–239. doi:10.1007/s11024-010-9155-x.
- Fischer, Frank. 2005. Citizens, Experts, and the Environment. Durham: Duke University Press.
- Gregory, Jane & Miller, Steve (1998); Science in Public: Communication, Culture & Credibility (Cambridge, Massachusetts USA: Perseus Publishing)
- Hess, David J (2011). "To Tell the Truth: On Scientific Counter Publics". Public Understanding of Science. 20 (5): 627–641. doi:10.1177/0963662509359988.
- Hilgartner, Stephen (1990). "The Dominant View of Popularisation: Conceptual Problems, Political Uses". Social Studies of Science. 20 (3): 519–539. doi:10.1177/030631290020003006.
- Irwin, Alan and Wynne, Brian. (eds.) 1996. Misunderstanding Science? The Public Reconstruction of Science and Technology. Cambridge: Cambridge University Press.
- Irwin, Alan. 1995. Citizen Science: A Study of People, Expertise and Sustainable Development. London and New York: Routledge.
- Jasanoff, Sheila (2003c). "Technologies of Humility: Citizen Participation in Governing Science". Minerva. 41 (3): 223–244.
- Jasanoff, Sheila. 2005. Designs on Nature: Science and Democracy in Europe and the United States. Princeton and Oxford: Princeton University Press.
- Leach, Melissa, Scoones, Ian and Wynne, Brian. (eds.) 2005. Science and Citizens: Globalisation and the Challenge of Engagement. London and New York: Zed Books.
- Public Understanding of Science, specialist journal.
- Shapin, Steven. 1990. ‘Science and the Public’ in R.C. Olby et al. (eds). Companion to the History of Modern Science. London and New York: Routledge. Pp. 990–1007.
- The Royal Academy of Science's 2006 "Factors affecting science communication: a survey of scientists and engineers" report.
- Southwell, Brian G. (2013). "Social Networks and Popular Understanding of Science and Health". Baltimore, MD: Johns Hopkins University Press.
- Southwell, Brian G.; Torres, Alicia (2006). "Connecting interpersonal and mass communication: Science news exposure, perceived ability to understand science, and conversation". Communication Monographs. 73 (3): 334–350. doi:10.1080/03637750600889518.
- Varughese, Shiju Sam (2012). "Where are the missing masses? The Quasi-publics and Non-publics of Technoscience". Minerva. 50 (2): 239–254. doi:10.1007/s11024-012-9197-3.
- Vega Science Trust - Over 90 free-view science programmes including lectures, discussions, interviews with eminent scientists, careers programmes, workshops and teaching resources.
External links
Look up divulgation in Wiktionary, the free dictionary. |
- Open Directory:Scientific communication.
- History of Science Communication and the Public
- Descarter Prizes and other prizes for science communication in European Union.
- Science.gov.
- Australian Centre for the Public Awareness of Science.
- Graduate Diploma in Science Communication.
- SciNotes.
- An e-Guide to science communication.
- Science and Communication: An Author/Editor/User's Perspective on the Transition from Paper to Electronic Publishing.
- science communication and research office SCRO
- Graphic Science.
- VKJ, Jeevan (2008). "NISCAIR ONLINE PERIODICALS REPOSITORY (NOPR) : Science awareness through public libraries in India". nopr.niscair.res.in. Retrieved June 16, 2015.