Sanov's theorem

In information theory, Sanov's theorem gives a bound on the probability of observing an atypical sequence of samples from a given probability distribution.

Let A be a set of probability distributions over an alphabet X, and let q be an arbitrary distribution over X (where q may or may not be in A). Suppose we draw n i.i.d. samples from q, represented by the vector . Further, let us ask that the empirical distribution, , of the samples falls within the set A—formally, we write . Then,

,

where

In words, the probability of drawing an atypical distribution is proportional to the KL distance from the true distribution to the atypical one; in the case that we consider a set of possible atypical distributions, there is a dominant atypical distribution, given by the information projection.

Furthermore, if A is the closure of its interior,

References


This article is issued from Wikipedia - version of the 11/17/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.