Saturn C-4

Saturn C-4
Function LEO and Lunar launch vehicle
Manufacturer Boeing (S-IB)
North American (S-II)
Douglas (S-IV)
Country of origin United States
Cost per launch 43.5 million (1985)
Size
Height 269.0 feet (82.0 m)
Diameter 320 inches (8.1 m)
Mass 1,023,670 pounds (464,330 kg)
Stages 3
Capacity
Payload to LEO 218,000 pounds (99,000 kg)
Payload to TLI 70,000 pounds (32,000 kg)
Associated rockets
Family Saturn
Comparable Saturn V
Launch history
Status Proposed (1962)
Launch sites planned SLC 37, Kennedy Space Center
First stage - S-IB-4
Length 113.10 feet (34.47 m)
Diameter 320 inches (8.1 m)
Empty mass 149,945 pounds (68,014 kg)
Gross mass 1,599,433 pounds (725,491 kg)
Engines 4 Rocketdyne F-1
Thrust 6,000,000 pounds-force (27,000 kN)
Specific impulse 265 sec (sea level)
Burn time 139 seconds
Fuel RP-1/LOX
Second stage - S-II-4
Length 69.80 feet (21.28 m)
Diameter 320 inches (8.1 m)
Empty mass 54,978 pounds (24,938 kg)
Gross mass 449,840 pounds (204,040 kg)
Engines 4 Rocketdyne J-2
Thrust 800,000 pounds-force (3,600 kN)
Specific impulse 300 sec (sea level)
Burn time 200 seconds
Fuel LH2/LOX
Third stage - S-IVB
Length 61.6 feet (18.8 m)
Diameter 21.7 feet (6.6 m)
Empty mass 29,700 pounds (13,500 kg)
Gross mass 271,000 pounds (123,000 kg)
Engines 1 Rocketdyne J-2
Thrust 225,000 lbf (1,000 kN)
Specific impulse 421 seconds (4.13 km/s)
Burn time 165 + 335 seconds
(2 burns)
Fuel LH2/LOX

The Saturn C-4 was the fourth rocket in the Saturn C series studied from 1959 to 1962. The C-4 design was proposed in 1960 for a three-stage launch vehicle that could launch 99,000 kg (218,000 lb) to Low Earth orbit and send 32,000 kg (70,000 lb) to the Moon via Trans-lunar injection. It met the initial requirements for a lunar orbit rendezvous and lunar landing mission.[1]

It would have consisted of three stages; an S-IB-4 first stage, a S-II-4 second stage and a S-IVB third stage. The first and second stages were essentially four-engine variants of the stages that would be used on the Saturn V, while the IVB stage was actually used on both the Saturn V and the Saturn IB.

It would have been capable of sending the 30,000 kg (67,000 lb) Apollo Command/Service Module into lunar orbit, but it would not have been able to carry the 15,000 kg (32,000 lb) Apollo Lunar Module as well. Although NASA eventually used the lunar orbit rendezvous method to go to the Moon, it decided to use the larger Saturn V which would provide a reserve payload capacity.

See also

References

  1. "Saturn C-4". Astronautix.com. Retrieved 8 June 2012.

     This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration.

    This article is issued from Wikipedia - version of the 4/25/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.