Semi-simple operator

In mathematics, a linear operator T on a finite-dimensional vector space is semi-simple if every T-invariant subspace has a complementary T-invariant subspace.[1]

An important result regarding semi-simple operators is that, a linear operator on a finite dimensional vector space over an algebraically closed field is semi-simple if and only if it is diagonalizable.[1] This is because such an operator always has an eigenvector; if it is, in addition, semi-simple, then it has a complementary invariant hyperplane, which itself has an eigenvector, and thus by induction is diagonalizable. Conversely, diagonalizable operators are easily seen to be semi-simple, as invariant subspaces are direct sums of eigenspaces, and any basis for this space can be extended to an eigenbasis.

Notes

  1. 1 2 Lam (2001), p. 39

References


This article is issued from Wikipedia - version of the 1/27/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.