Symbol table
In computer science, a symbol table is a data structure used by a language translator such as a compiler or interpreter, where each identifier in a program's source code is associated with information relating to its declaration or appearance in the source.
Implementation
A common implementation technique is to use a hash table. A compiler may use one large symbol table for all symbols or use separated, hierarchical symbol tables for different scopes. There are also trees, linear lists and self-organizing lists which can be used to implement a symbol table. It also simplifies the classification of literals in tabular format. The symbol table is accessed by most phases of a compiler, beginning with the lexical analysis to optimization.
Uses
An object file will contain a symbol table of the identifiers it contains that are externally visible. During the linking of different object files, a linker will use these symbol tables to resolve any unresolved references.
A symbol table may only exist during the translation process, or it may be embedded in the output of that process for later exploitation, for example, during an interactive debugging session, or as a resource for formatting a diagnostic report during or after execution of a program.
While reverse engineering an executable, many tools refer to the symbol table to check what addresses have been assigned to global variables and known functions. If the symbol table has been stripped or cleaned out before being converted into an executable, tools will find it harder to determine addresses or understand anything about the program.
At that time of accessing variables and allocating memory dynamically, a compiler should perform many works and as such the extended stack model requires the symbol table.
Example
Consider the following program written in C:
// Declare an external function
extern double bar(double x);
// Define a public function
double foo(int count)
{
double sum = 0.0;
// Sum all the values bar(1) to bar(count)
for (int i = 1; i <= count; i++)
sum += bar((double) i);
return sum;
}
A C compiler that parses this code will contain at least the following symbol table entries:
Symbol name | Type | Scope |
---|---|---|
bar | function, double | extern |
x | double | function parameter |
foo | function, double | global |
count | int | function parameter |
sum | double | block local |
i | int | for-loop statement |
In addition, the symbol table will also contain entries generated by the compiler for intermediate expression values (e.g., the expression that casts the i
loop variable into a double
, and the return value of the call to function bar()
), statement labels, and so forth.
As another example, the symbol table of a small program is listed below. The table itself was generated using the GNU binutils' nm utility. There is one data symbol, (noted by the "D" type), and many functions (self defined as well as from the standard library). The first column is where the symbol is located in the memory, the second is "The symbol type" and the third is the name of the symbol. By passing suitable parameters, the symbol table was made to sort on basis of address.
Address | Type | Name |
---|---|---|
00000020 | a | T_BIT |
00000040 | a | F_BIT |
00000080 | a | I_BIT |
20000004 | t | irqvec |
20000008 | t | fiqvec |
2000000c | t | InitReset |
20000018 | T | _main |
20000024 | t | End |
20000030 | T | AT91F_US3_CfgPIO_useB |
2000005c | t | AT91F_PIO_CfgPeriph |
200000b0 | T | main |
20000120 | T | AT91F_DBGU_Printk |
20000190 | t | AT91F_US_TxReady |
200001c0 | t | AT91F_US_PutChar |
200001f8 | T | AT91F_SpuriousHandler |
20000214 | T | AT91F_DataAbort |
20000230 | T | AT91F_FetchAbort |
2000024c | T | AT91F_Undef |
20000268 | T | AT91F_UndefHandler |
20000284 | T | AT91F_LowLevelInit |
200002e0 | t | AT91F_DBGU_CfgPIO |
2000030c | t | AT91F_PIO_CfgPeriph |
20000360 | t | AT91F_US_Configure |
200003dc | t | AT91F_US_SetBaudrate |
2000041c | t | AT91F_US_Baudrate |
200004ec | t | AT91F_US_SetTimeguard |
2000051c | t | AT91F_PDC_Open |
2000059c | t | AT91F_PDC_DisableRx |
200005c8 | t | AT91F_PDC_DisableTx |
200005f4 | t | AT91F_PDC_SetNextTx |
20000638 | t | AT91F_PDC_SetNextRx |
2000067c | t | AT91F_PDC_SetTx |
200006c0 | t | AT91F_PDC_SetRx |
20000704 | t | AT91F_PDC_EnableRx |
20000730 | t | AT91F_PDC_EnableTx |
2000075c | t | AT91F_US_EnableTx |
20000788 | T | __aeabi_uidiv |
20000788 | T | __udivsi3 |
20000884 | T | __aeabi_uidivmod |
2000089c | T | __aeabi_idiv0 |
2000089c | T | __aeabi_ldiv0 |
2000089c | T | __div0 |
200009a0 | D | _data |
200009a0 | A | _etext |
200009a0 | D | holaamigosh |
200009a4 | A | __bss_end__ |
200009a4 | A | __bss_start |
200009a4 | A | __bss_start__ |
200009a4 | A | _edata |
200009a4 | A | _end |