Weak value

In quantum mechanics (and computation), a weak value is a quantity related to a shift of a measuring device's pointer when there is pre- and postselection. It should not be confused with a weak measurement, which is often defined in conjunction. The weak value was first defined by Yakir Aharonov, David Albert and Lev Vaidman, published in Physical Review Letters 1988,[1] and is related to the two-state vector formalism.

Definition and Derivation

There are many excellent review articles on weak values (see e.g.[2][3][4][5] ) here we briefly cover the basics.

Definition

We will denote the initial state of a system as , while the final state of the system is denoted as . We will refer to the initial and final states of the system as the pre- and post-selected quantum mechanical states. With respect to these state the weak value of the observable is defined as:

Notice that if then the weak value is equal to the usual expected value in the initial state or the final state . In general the weak value quantity is a complex number. The weak value of the observable becomes large when the post-selected state, , approaches being orthogonal to the pre-selected state, , i.e. . If is larger than the largest eigenvalue of or smaller than the smallest eigenvalue of the weak value is said to be anomalous.

As an example consider a spin 1/2 particle.[6] Take to be the Pauli Z operator with eigenvalues . Using the initial state

and the final state

we can calculate the weak value to be

.

For the weak value is anomalous.

Derivation

Here we follow the presentation given by Duck, Stevenson, and Sudarshan,[6] (with some notational updates from Kofman et al.[2] )which makes explicit when the approximations used to derive the weak value are valid.

Consider a quantum system that you want to measure by coupling an ancillary (also quantum) measuring device. The observable to be measured on the system is . The system and ancilla are coupled via the Hamiltonian where the coupling constant is integrated over an interaction time and is the canonical commutator. The Hamiltonian generates the unitary

Take the initial state of the ancilla to have a Gaussian distribution

the position wavefunction of this state is

The initial state of the system is given by above; the state , jointly describing the initial state of the system and ancilla, is given then by:

Next the system and ancilla interact via the unitary . After this one performs a projective measurement of the projectors on the system. If we postselect (or condition) on getting the outcome , then the (unnormalized) final state of the meter is

To arrive at this conclusion, we use the first order series expansion of on line (I), and we require that[2][6]

On line (II) we use the approximation that for small . This final approximation is only valid when[2][6]

As is the generator of translations, the ancilla's wavefunction is now given by

This is the original wavefunction, shifted by an amount . By Busch's theorem[7] the system and meter wavefunctions are necessarily disturbed by the measurement. There is a certain sense in which the protocol that allows one to measure the weak value is minimally disturbing,[8] but there is still disturbance.[8]

Applications

Quantum metrology and Tomography

At the end of the original weak value paper[1] the authors suggested weak values could be used in quantum metrology:

Another striking aspect of this experiment becomes evident when we consider it as a device for measuring a small gradient of the magnetic field ... yields a tremendous amplification.

Aharonov, Albert, Vaidman[1]

This suggestion was followed by Hosten and Kwiat[9] and later by Dixon et al.[10] It appears to be an interesting line of research that could result in improved quantum sensing technology.

Additionally in 2011, weak measurements of many photons prepared in the same pure state, followed by strong measurements of a complementary variable, were used to perform quantum tomography (i.e. reconstruct the state in which the photons were prepared).[11]

Quantum foundations

Weak values have been used to examine some of the paradoxes in the foundations of quantum theory. For example, the research group of Aephraim Steinberg at the University of Toronto confirmed Hardy's paradox experimentally using joint weak measurement of the locations of entangled pairs of photons.[12][13] (also see[14])

Building on weak measurements, Howard M. Wiseman proposed a weak value measurement of the velocity of a quantum particle at a precise position, which he termed its "naïvely observable velocity". In 2010, a first experimental observation of trajectories of a photon in a double-slit interferometer was reported, which displayed the qualitative features predicted in 2001 by Partha Ghose[15] for photons in the de Broglie-Bohm interpretation.[16][17]

Criticisms

Criticisms of weak values include philosophical and practical criticisms. Some noted researchers such as Asher Peres, Tony Leggett, David Mermin, and Charles H. Bennett are critical of weak values also:

Further reading

References

  1. 1 2 3 Yakir Aharonov; David Z. Albert; Lev Vaidman (1988). "How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100". Physical Review Letters. 60 (14): 1351–1354. Bibcode:1988PhRvL..60.1351A. doi:10.1103/PhysRevLett.60.1351. PMID 10038016.
  2. 1 2 3 4 A. G. Kofman; S. Ashhab; F. Nori (2012). "Nonperturbative theory of weak pre- and post-selected measurements". Physics Reports. 520 (1): 43–133. arXiv:1109.6315Freely accessible. Bibcode:2012PhR...520...43K. doi:10.1016/j.physrep.2012.07.001.
  3. Boaz Tamir; Eliahu Cohen (2013). "Introduction to Weak Measurements and Weak Values". Quanta. 2 (1): 7–17. doi:10.12743/quanta.v2i1.14.
  4. Bengt E. Y. Svensson (2013). "Pedagogical Review of Quantum Measurement Theory with an Emphasis on Weak Measurements". Quanta. 2 (1): 18–49. doi:10.12743/quanta.v2i1.12.
  5. J. Dressel; M. Malik; F. M. Miatto; A. N. Jordan; R. W. Boyd (2014). "Colloquium: Understanding quantum weak values: Basics and applications". Reviews of Modern Physics. 86 (1): 307–316. arXiv:1305.7154Freely accessible. Bibcode:2014RvMP...86..307D. doi:10.1103/RevModPhys.86.307.
  6. 1 2 3 4 Duck, I. M.; Stevenson, P. M.; Sudarshan, E. C. G. (1989). "The sense in which a "weak measurement" of a spin- extonehalf{} particle's spin component yields a value 100". Physical Review D. 40 (6): 2112–2117. Bibcode:1989PhRvD..40.2112D. doi:10.1103/PhysRevD.40.2112. horizontal tab character in |title= at position 51 (help)
  7. Paul Busch (2009). J. Christian; W. Myrvold, eds. "No Information Without Disturbance": Quantum Limitations of Measurement. Invited contribution, "Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle: An International Conference in Honour of Abner Shimony", Perimeter Institute, Waterloo, Ontario, Canada, July 18–21, 2006. Springer-Verlag. pp. 229–256. arXiv:0706.3526Freely accessible. doi:10.1007/978-1-4020-9107-0. ISSN 1566-659X.
  8. 1 2 Asger C. Ipsen (2015). "Disturbance in weak measurements and the difference between quantum and classical weak values". Physical Review A. 91 (6): 062120. arXiv:1409.3538Freely accessible. Bibcode:2015PhRvA..91f2120I. doi:10.1103/PhysRevA.91.062120.
  9. O. Hosten; P. Kwiat (2008). "Observation of the spin Hall effect of light via weak measurements". Science. 319 (5864): 787–790. Bibcode:2008Sci...319..787H. doi:10.1126/science.1152697.
  10. P. Ben Dixon; David J. Starling; Andrew N. Jordan; John C. Howell (2009). "Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification". Physical Review Letters. 102 (17): 173601. arXiv:0906.4828Freely accessible. Bibcode:2009PhRvL.102q3601D. doi:10.1103/PhysRevLett.102.173601.
  11. Jeff S. Lundeen, Brandon Sutherland, Aabid Patel, Corey Stewart, Charles Bamber: Direct measurement of the quantum wavefunction, Nature vol. 474, pp. 188–191, 9. June 2011, doi:10.1038/nature10120
  12. J. S. Lundeen; A. M. Steinberg (2009). "Experimental Joint Weak Measurement on a Photon Pair as a Probe of Hardy's Paradox". Physical Review Letters. 102 (2): 020404. arXiv:0810.4229Freely accessible. Bibcode:2009PhRvL.102b0404L. doi:10.1103/PhysRevLett.102.020404.
  13. "Hardy's paradox confirmed experimentally". Perimeter Institute for Theoretical Physics. July 2, 2009. Retrieved June 8, 2013.
  14. K. Yokota, T. Yamamoto, M. Koashi, N. Imoto, "Direct observation of Hardy's paradox by joint weak measurement with an entangled photon pair", New J. Phys. 11, 033011 (2009)
  15. Partha Ghose, A.S. Majumdar, S. Guhab, J. Sau: Bohmian trajectories for photons, Physics Letters A 290 (2001), pp. 205–213, 10 November 2001
  16. Sacha Kocsis, Sylvain Ravets, Boris Braverman, Krister Shalm, Aephraim M. Steinberg: Observing the trajectories of a single photon using weak measurement, 19th Australian Institute of Physics (AIP) Congress, 2010
  17. Sacha Kocsis, Boris Braverman, Sylvain Ravets, Martin J. Stevens, Richard P. Mirin, L. Krister Shalm, Aephraim M. Steinberg: Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer, Science, vol. 332 no. 6034 pp. 1170–1173, 3 June 2011, doi:10.1126/science.1202218 (abstract)
  18. Dmitri Sokolovski (2013). "Are the Weak Measurements Really Measurements?". Quanta. 2 (1): 50–57. doi:10.12743/quanta.v2i1.15.
This article is issued from Wikipedia - version of the 5/13/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.