2-Nitrochlorobenzene
Names | |
---|---|
IUPAC name
1-Chloro-2-nitrobenzene | |
Other names
2-Chloronitrobenzene | |
Identifiers | |
88-73-3 | |
3D model (Jmol) | Interactive image |
ChemSpider | 13853953 |
ECHA InfoCard | 100.001.686 |
| |
| |
Properties | |
C6H4ClNO2 | |
Molar mass | 157.55 g·mol−1 |
Appearance | Yellow crystals |
Density | 1.368 g/mL |
Melting point | 33 °C (91 °F; 306 K) |
Boiling point | 245.5 °C (473.9 °F; 518.6 K) |
Insoluble | |
Solubility in other solvents | Highly soluble in diethyl ether, benzene, and hot ethanol |
Hazards | |
Main hazards | Toxic, Irritant |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
Infobox references | |
2-Nitrochlorobenzene is an organic compound with the formula ClC6H4NO2.[1] It is a yellow crystalline solid that is important as a precursor to other compounds due to the two reactive sites present on the molecule.
Synthesis
Nitrochlorobenzene is typically synthesized by nitration of chlorobenzene in the presence of sulfuric acid:
- C6H5Cl + HNO3 → O2NC6H4Cl + H2O
This reaction affords a mixture of isomers. Using an acid ratio of 30/56/14, the product mix is typically 34-36% 2-nitrochlorobenzene and 63-65% 4-nitrochlorobenzene, with only about 1% 3-nitrochlorobenzene.
Reactions
Alkylation and electrophilic aromatic substitution can occur at the chlorinated carbon center, and a diverse array of reactions can be carried out using the nitro group.[1] 2-Nitrochlorobenzene can be reduced to 2-chloroaniline with Fe/HCl mixture, the Bechamp reduction.
Applications
2-Nitrochlorobenzene is not valuable in itself but is a precursor to other useful compounds. The compound is particularly useful because both of its reactive sites can be utilized to create further compounds that are mutually ortho. Its derivative 2-chloroaniline is a precursor to 3,3’-dichlorobenzidine, itself a precursor to many dyes and pesticides.
References
- 1 2 Gerald Booth, "Nitro Compounds, Aromatic" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH: Weinheim, 2005. doi:10.1002/14356007.a17_411