Messier 87

Messier 87
Messier 87 as seen by the Hubble Space Telescope.
Observation data
Epoch J2000
Constellation Virgo
Right ascension 12h 30m 49.42338s[1]
Declination +12° 23 28.0439[1]
Apparent dimension (V) 7.2 × 6.8 moa[2]
Apparent magnitude (V)9.59[3]
Characteristics
TypeE+0-1 pec, NLRG Sy[3]
Astrometry
Heliocentric radial velocity 1307 ± 7[3] km/s
Redshift 0.004360 ± 0.000022[3]
Galactocentric velocity 1254 ± 7[3] km/s
Distance 53.5 ± 1.63 Mly (16.40 ± 0.50 Mpc)[4]
Other designations
Virgo A, Virgo X-1, NGC 4486, UGC 7654, PGC 41361, VCC 1316, Arp 152, 3C 274,[3] 3U 1228+12.[5]
Database references
SIMBAD data
    See also: Galaxy, List of galaxies

    Messier 87 (also known as Virgo A or NGC 4486, and generally abbreviated to M87) is a supergiant elliptical galaxy in the constellation Virgo. One of the most massive galaxies in the local universe, it is notable for its large population of globular clusters—M87 contains about 12,000 compared to the 150–200 orbiting the Milky Way—and its jet of energetic plasma that originates at the core and extends outward at least 1,500 parsecs (4,900 light-years), travelling at relativistic speed. It is one of the brightest radio sources in the sky, and is a popular target for both amateur astronomy observations and professional astronomy study.

    French astronomer Charles Messier discovered M87 in 1781, cataloguing it as a nebulous feature while searching for objects that would confuse comet hunters. The second brightest galaxy within the northern Virgo Cluster, M87 is located about 16.4 million parsecs (53.5 million light-years) from Earth. Unlike a disk-shaped spiral galaxy, M87 has no distinctive dust lanes. Instead, it has an almost featureless, ellipsoidal shape typical of most giant elliptical galaxies, diminishing in luminosity with distance from the centre. Forming around one sixth of M87's mass, the stars in this galaxy have a nearly spherically symmetric distribution, their density decreasing with increasing distance from the core. At the core is a supermassive black hole, which forms the primary component of an active galactic nucleus. This object is a strong source of multiwavelength radiation, particularly radio waves. M87's galactic envelope extends out to a radius of about 150 kiloparsecs (490,000 light-years), where it has been truncated—possibly by an encounter with another galaxy. Between the stars is a diffuse interstellar medium of gas that has been chemically enriched by elements emitted from evolved stars.

    Observation history

    In 1781, French astronomer Charles Messier published a catalogue of 103 objects that had a nebulous appearance. This list was intended to identify objects that might be confused with comets. In subsequent use, each item in the catalogue was prefixed with an 'M'. Thus, M87 was the eighty seventh member of Messier's catalogue.[6] During the 1880s, this nebula was included in the New General Catalogue as NGC 4486. This compilation of nebulae and star clusters was assembled by the Danish-Irish astronomer John Dreyer based primarily on the observations of English astronomer John Herschel.[7]

    In 1918, American astronomer Heber Curtis of Lick Observatory observed that there was no spiral structure in M87 and he noticed a "curious straight ray ... apparently connected with the nucleus by a thin line of matter." The ray appeared brightest at the inner end.[8] The following year, a supernova within M87 reached a peak photographic magnitude of 21.5, although this event was not reported until photographic plates were examined by the Russian astronomer Innokentii A. Balanowski in 1922.[9][10]

    American astronomer Edwin Hubble categorized M87 as one of the brighter globular nebulae, as it lacked any spiral structure but appeared to belong to the same family of non-galactic nebulae as spiral nebulae.[11] In 1926 he produced a new categorization of nebulae, with M87 being classified as a type of elliptical extra-galactic nebula with no apparent elongation (class E0).[12] By 1931, Hubble had identified M87 as a member of the Virgo cluster, for which he gave a provisional estimate of 1.8 million parsecs from Earth. At the time it was the only known example of an elliptical nebula for which individual stars could be resolved.[13] M87 continued to be called an extragalactic nebula for many years thereafter, but by 1956 it had been identified as an E0-type galaxy.[14]

    Hubble follows spiral flow of black-hole-powered jet.[15]

    In 1947, a prominent radio source was identified overlapping the location of M87, and this was labeled Virgo-A.[16] This source was confirmed to be M87 by 1953, and the linear relativistic jet emerging from the core of the galaxy was suggested as the cause. This jet extended from the core at a position angle of 260° to an angular distance of 20″ with an angular width of 2″.[17] In 1969–70, a strong component of the radio emission was found to closely align with the optical source of the jet.[5]

    In April 1965, the US Naval Research Laboratory group launched an Aerobee 150 equipped with a pair of geiger counters.[18] This flight discovered seven candidate X-ray sources, including the first extragalactic X-ray source; Virgo X-1 was designated as the first X-ray source detected in Virgo.[19] A later Aerobee rocket launched from White Sands Missile Range on July 7, 1967, yielded further evidence that the source Virgo X-1 was the radio galaxy M87.[20] Subsequent X-ray observations by the HEAO 1 and Einstein Observatory showed a complex source that included the active galactic nucleus of M87.[21] However, there is little central concentration of the X-ray emission.[5]

    Visibility

    The location of M87 (upper right) in Virgo
    The location of M87 in Virgo

    M87 is located near the high declination border of the Virgo, next to the constellation of Coma Berenices. It lies along a line between the stars Epsilon Virginis and Denebola.[22] At an apparent magnitude of 9.59, this galaxy can be readily observed using a small telescope with a 6 cm (2.4 in) aperture, extending across an angular area of 7.2 × 6.8 arcminutes with a bright, 45 arcsecond core.[2] Viewing the jet is a challenge without the aid of photography.[23] Before 1991, Russian-American astronomer Otto Struve was the only person known to have seen the jet visually, using the 254 cm (100 in) Hooker telescope.[24] In recent years, however, it has been observed in larger amateur telescopes under excellent conditions.[25]

    Properties

    Huge halo around Messier 87.[26]

    In the modified Hubble sequence galaxy morphological classification scheme of French astronomer Gérard de Vaucouleurs, M87 is categorized as an E0p galaxy. The E0 designation is used for an elliptical galaxy that displays no flattening—that is, it appears spherical.[27] A 'p' suffix indicates a peculiar galaxy that does not fit cleanly into the classification scheme; in this case, the peculiarity denotes the presence of the jet emerging from the core.[27][28] M87 is considered a type-cD galaxy, which is a supergiant D class galaxy.[29][30] The latter category, first proposed by American astronomer William W. Morgan in 1958, is a galaxy that has an elliptical-like nucleus surrounded by an extensive, dustless, diffuse envelope.[31][32]

    The distance to M87 has been estimated using several independent techniques. These include measuring the luminosity of planetary nebulae, comparison with nearby galaxies whose distance has been estimated using standard candles such as cepheid variables, the linear size distribution of globular clusters,[lower-alpha 1] and the tip of the red giant branch method using individually resolved red giant stars,[lower-alpha 2] These measurements are consistent with each other, and their weighted average yields a distance estimate of 16.4 ± 0.5 megaparsecs (53.5 ± 1.63 million light-years).[4]

    Enclosed mass
    Mass
    ×1012 M
    Radius
    kpc
    2.4[33] 32
    3.0[34] 44
    5.7[35] 47
    6.0[36] 50

    This galaxy is one of the most massive in the local Universe.[35] This galaxy spans a diameter of 120,000 light years, about the same as the Milky Way. But M87 is a spheroid, not a flat spiral. So it contains close to 2.7 trillion solar masses by some estimates.[37] The mass of M87 within a radius of 9–40 kiloparsecs (29–130 thousand light-years) from the core steadily increases roughly in proportion to r1.7, where r is the radius from the core.[34] Within a radius of 32 kiloparsecs (100 thousand light-years), the mass is (2.4 ± 0.6) × 1012 times the mass of the Sun,[33] which is double the mass of the Milky Way galaxy.[38] Only a fraction of this mass is in the form of stars, as M87 has an estimated mass to luminosity ratio of 6.3 ± 0.8. That is, about one part in six of the galaxy's mass is in the form of stars that are radiating energy.[39] The total mass of M87 may be 200 times that of the Milky Way.[40]

    Gas is infalling into the galaxy at the rate of two to three solar masses per year, most of which may be accreted onto the core region.[41] The extended stellar envelope of this galaxy reaches a radius of about 150 kiloparsecs (490 thousand light-years),[42][43] compared to about 100 kiloparsecs (330 thousand light-years) for the Milky Way.[44] Beyond that distance the outer edge of the galaxy has been truncated by some means; possibly by an earlier encounter with another galaxy.[42][43] There is some evidence of linear streams of stars to the northwest of the galaxy, which may have been created by tidal stripping of orbiting galaxies, or by small satellite galaxies falling in toward M87.[45] as well as a filament of hot, ionized gas in the northeastern outer part of this galaxy that has been proposed to be the remnant of a small, gas-rich galaxy that was disrupted by M87 and that could be feeding its active nucleus.[46]

    Using the Very Large Telescope to study the motions of about 300 planetary nebulae, it has been shown that M87 has absorbed a medium-sized galaxy over the last billion years. The distinctive spectral properties of the planetary nebulae allowed astronomers to discover a chevron-like structure in M87's halo which was produced by the incomplete phase-space mixing of a disrupted galaxy.[47][48]

    Components

    Artist's concept of a supermassive black hole and its accretion disk

    At the core of this galaxy is a supermassive black hole (SMBH) with an estimated from (3.5 ± 0.8) × 109 times the mass of the Sun[49] to (6.6 ± 0.4) × 109 M.[49] This is one of the highest masses known for such an object. Surrounding the black hole is a rotating disk of ionized gas that is oriented roughly perpendicular to the relativistic jet. This disk is rotating at velocities of up to roughly 1,000 km/s,[50] and spans a maximum diameter of 0.12 parsecs (0.39 light-years).[51] Gas is accreting onto the black hole at an estimated rate equal to the mass of the Sun every ten years (about 91 earth masses per day).[52]

    Observations suggest that the black hole in M87 may be displaced from the galaxy center by a distance of about 25 parsecs (82 light-years).[53] The displacement is in the opposite direction from the one-sided jet, which may indicate that the black hole has been accelerated away from the center by the jet. Another possibility is that the displacement occurred during the merger of two SMBH.[53][54] However care has to be taken with these findings. The study does not include any spectroscopic discrimination between the stellar and active galactic nucleus component. It is therefore possible that the seeming position of the galaxy center with respect to the black hole is misinterpreted by an optical flare of the jet itself. In 2011, an analysis of M87 did not find any statistically significant displacement.[55]

    Active elliptical galaxies of a form similar to M87 are believed to form as a result of one or more mergers between smaller galaxies.[56] There is now little dust remaining to form the diffuse nebulae where new stars are created, so the stellar population is dominated by old, population II stars that contain relatively low abundances of elements other than hydrogen and helium. The elliptical shape of this galaxy is maintained by random orbital motions of its member stars, in contrast to the more orderly rotational motions found in a spiral galaxy such as the Milky Way.[57]

    The space between the stars in the M87 galaxy is filled with a diffuse interstellar medium of gas, which has been chemically enriched by the elements ejected from stars as they passed beyond the end of their main sequence lifetime. Carbon and nitrogen is being continuously supplied by intermediate mass stars as they pass through the asymptotic giant branch. The heavier elements from oxygen to iron are primarily produced by supernova explosions within the galaxy. About 60% of the abundance of these heavy elements was produced by core-collapse supernovae, while the remainder came from Type Ia supernovae. The distribution of these elements suggests that early enrichment was from core-collapse supernovae. The contribution from these sources was much lower in abundance than in the Milky Way. Type Ia supernovae have provided a continuous contribution to the interstellar medium of M87 throughout the history of the galaxy.[58]

    Colors represent the motion of the stars that form the giant elliptical galaxy M87.[59]

    Examination of M87 at far infrared wavelengths shows an excess emission at wavelengths longer than 25 μm. Normally such emission may be an indication of thermal emission by warm dust.[60] However, in the case of M87, the emission appears to be fully explained by synchrotron radiation from the jet. Within the galaxy, silicate grains are expected to survive for no more than 46 million years because of the X-ray emission from the core.[61] This dust may be destroyed by the hostile environment or expelled from the galaxy.[62] The combined mass of dust in this galaxy is no more than 70,000 times the mass of the Sun.[61] By comparison, the Milky Way contains about a hundred million (108) solar masses worth of dust.[63]

    Within a 4 kpc (13×10^3 ly) radius of the core, the abundance of elements other than hydrogen and helium—what astronomers term the metallicity—is about half the abundance in the Sun. Outside this radius, the abundance of metals steadily decreases with increasing distance from the core.[64] Although this is classified as an elliptical galaxy and therefore lacks the dust lanes of a spiral galaxy, optical filaments have been observed in M87. These filaments have an estimated mass of about 10,000 times the mass of the Sun.[41] Surrounding the galaxy is an extended corona with hot, low density gas.[64]

    M87 has an abnormally large population of globular clusters. A 2006 survey out to an angular distance of 25 from its core estimates that there are 12,000 ± 800 globular clusters in orbit around M87, as compared to the Milky Way's 150–200.[65] These clusters are similar in size distribution to the globular clusters of the Milky Way, with most having an effective radius between 1 and 6 parsecs. The size of the M87 clusters shows a gradual increase with distance from the galactic center.[66] The first hypervelocity globular cluster, HVGC-1, was discovered escaping M87.[67] The discovery of HVGC-1 suggests that the core of M87 holds not one but two supermassive black holes. The two supermassive black holes are the result of a long-ago collision between two galaxies, which merged to form a single giant galaxy.[68]

    Ultra-compact dwarfs resemble globular clusters but have a diameter of 10 parsecs (33 light-years) or more, much larger than the 3-parsec (10 light-year) maximum of globular clusters. Their nature is unclear as to whether they are dwarf galaxies captured by M87 or a new class of massive globular cluster. Almost a hundred have been identified from the thousands of globular clusters in M87.[69]

    Jet

    This Hubble Space Telescope photograph shows the jet of matter ejected from M87 at nearly light speed, as it stretches 1.5 kpc (5 kly) from the galactic core.
    In this Chandra X-ray Observatory image, cold matter from the Virgo cluster falls toward the core of M87, where it is met by the relativistic jet, producing shock waves in the galaxy's interstellar medium.

    The relativistic jet of matter emerging from the core extends at least 1.5 kiloparsecs (5 thousand light-years) from the nucleus of M87 and is made up of matter ejected from the galaxy by a supermassive black hole. This jet is highly collimated, appearing constrained to an angle of 60° within 0.8 parsecs (2.6 light-years) of the core, about 16° at a distance of 2 parsecs (6.5 light-years) and an angle of 6–7° at a distance of 12 parsecs (39 light-years).[70] The jet's base has the diameter of 5.5 ± 0.4 Schwarzschild radii. The jet is probably powered by a prograde accretion disk around a spinning supermassive black hole.[70] It is surrounded by a lower velocity, non-relativistic component. There is evidence of a counter jet, but this feature remains unseen from the Earth due to relativistic beaming.[71][72] The jet is precessing, causing the outflow to form a helical pattern out to a distance of 1.6 parsecs (5.2 light-years).[51] Lobes of matter from the jet extend out to a distance of 77 kiloparsecs (250 thousand light-years).[73] German-American astronomer Walter Baade found that the light from the jet is plane polarized, which suggested that the energy was being generated by the acceleration of electrons moving at relativistic velocities in a magnetic field. The total energy output of these electrons was estimated as 5.1 × 1056 ergs[74] (or 5.1 × 1049 joules or 3.2 × 1068 eV). For comparison, the entire Milky Way galaxy output is estimated at 5 × 1036 joules per second (watts).

    In pictures taken by the Hubble Space Telescope in 1999, the motion of M87's jet was measured at four to six times the speed of light. This motion is presumably an optical illusion caused by the relativistic velocity of the jet, and not true superluminal motion. However, detection of such motion supports the theory that quasars, BL Lac objects and radio galaxies may all be the same phenomenon, known as active galaxies, viewed from different perspectives.[75][76] It has been proposed M87 could actually be a BL Lacertae object (with a low-luminosity nuclei compared with the brightness of its host galaxy) seen from an unfavorable angle to appreciate the properties of that kind of galaxies.[77][78]

    Observations made by Chandra X-ray Observatory indicate the presence of loops and rings in the hot X-ray emitting gas that permeates the cluster and surrounds M87. These loops and rings are generated by pressure waves. The pressure waves are caused by variations in the rate at which material is ejected from the supermassive black hole in jets. The distribution of loops suggests that minor eruptions occur every six million years. One of the rings, caused by a major eruption, is a shock wave 26 kiloparsecs (85 thousand light-years) in diameter around the black hole. Other features observed include narrow X-ray emitting filaments up to 31 kiloparsecs (100 thousand light-years) long, and a large cavity in the hot gas caused by a major eruption 70 million years ago. The regular eruptions prevent a huge reservoir of gas from cooling and forming stars, implying that M87’s evolution may have been seriously affected, preventing it from becoming a large spiral galaxy. The observations also imply the presence of sound waves, 56 octaves below middle C for the minor eruptions and 58 to 59 below middle C for the major eruptions.[79]

    M87 is a very strong source of gamma rays, which are the most energetic rays of the electromagnetic spectrum. Gamma rays coming from M87 have been observed since the late 1990s, but in 2006, using the HESS Cherenkov telescopes, scientists have measured the variations of the gamma ray flux coming from M87, and found that the flux changes over a matter of days. This short period makes the immediate vicinity of the supermassive black hole in M87 the most promising source for these gamma rays.[80] In general, the smaller the diameter of the emission source, the faster the variation in flux, and vice versa.

    A knot of matter in the jet, designated HST-1, has been tracked by the Hubble Space Telescope and the Chandra X-ray Observatory. This knot is about 65 parsecs (210 light-years) from the core. By 2006, the X-ray intensity of this knot had increased by a factor of 50 over a four-year period.[81] This X-ray emission has since been decaying in a variable manner.[82]

    Environment

    A cluster of galaxies
    Messier 87 is a member of the Virgo Cluster, and can be seen to lower left of this cluster image.

    This supergiant elliptical galaxy is located near the center of the Virgo Cluster.[30] This rich cluster has about 2,000 members[83] and it forms the core of the larger Virgo Supercluster, of which the Local Group, and hence the Milky Way galaxy, is an outlying member.[42] The cluster is organized into at least three distinct subsystems that are associated with the three galaxies M87, M49 and M86, with the one centered around M87 known as Virgo A and the one around M49 as Virgo B.[84] There is a preponderance of elliptical and S0 galaxies around M87, with a chain of elliptical galaxies aligned with the jet.[85] In terms of mass, M87 is a dominant member of the cluster, and hence appears to be moving very little relative to the cluster as a whole.[42] Indeed, M87 is defined as the cluster center. The cluster has a sparse gaseous atmosphere that emits X-rays that decrease in temperature toward the middle, where M87 is located.[60] The combined mass of the cluster is estimated to be (0.15–1.5) × 1015 solar masses.[83]

    Measurements of the motion of intracluster planetary nebulae between M87 and M86 suggest that these two galaxies are moving toward each other and this may be their first encounter. M87 may have encountered M84 in the past, as evidenced by the truncation of the outer halo of the former from tidal effects. However, another possible cause of this truncation is a contraction due to an unseen mass falling into M87 from the rest of the cluster, which, in particular, may be the hypothesized dark matter. A third possibility is that the halo formation was truncated as a result of early feedback from the active galactic nucleus at the core of M87.[42]

    Notes

    1. this yields a distance of 16.4 ± 2.3 megaparsecs (53.5 ± 7.50 million light-years).[4]
    2. this yields a distance of 16.7 ± 0.9 megaparsecs (54.5 ± 2.94 million light-years).[4]

    References

    1. 1 2 Lambert, S. B.; Gontier, A.-M. (January 2009). "On radio source selection to define a stable celestial frame". Astronomy and Astrophysics. 493 (1): 317–23. Bibcode:2009A&A...493..317L. doi:10.1051/0004-6361:200810582.
    2. 1 2 Luginbuhl, Christian B.; Skiff, Brian A. (1998). Observing Handbook and Catalogue of Deep-Sky Objects (2nd ed.). Cambridge, United Kingdom: Cambridge University Press. p. 266. ISBN 0-521-62556-4.
    3. 1 2 3 4 5 6 "Results for NGC 4486". NASA/IPAC Extragalactic Database. California Institute of Technology. Retrieved 22 October 2006. Select the "By Name" cell, then enter "NGC 4486" in the "Object Name:" field of the query form.
    4. 1 2 3 4 Bird, S.; Harris, W. E.; Blakeslee, J. P.; Flynn, C. (2004). "The inner halo of M 87: a first direct view of the red-giant population". Astronomy and Astrophysics. 524: 1–11. arXiv:1009.3202Freely accessible. Bibcode:2010A&A...524A..71B. doi:10.1051/0004-6361/201014876.
    5. 1 2 3 Turland, B. D. (February 1975). "Observations of M87 at 5 GHz with the 5-km telescope". Monthly Notices of the Royal Astronomical Society. 170 (2): 281–94. Bibcode:1975MNRAS.170..281T. doi:10.1093/mnras/170.2.281.
    6. Basu, Baidyanath (2003). "An Introduction to Astrophysics". PHI Learning Pvt. Ltd.: 237. ISBN 81-203-1121-3.
    7. Dreyer, J. L. E. (1888). "A New General Catalogue of Nebulae and Clusters of Stars,being the Catalogue of the late Sir John F.W. Herschel, Bart., revised, corrected, and enlarged.". Memoires of the Royal Astronomical Society. 49: 1–237. Bibcode:1888MmRAS..49....1D.
    8. Curtis, Heber Doust (1918). "Descriptions of 762 Nebulae and Clusters Photographed with the Crossley Reflector". Publications of the Lick Observatory. University of California Press. 13: 31.
    9. Hubble, E. (October 1923). "Messier 87 and Belanowsky's Nova". Publications of the Astronomical Society of the Pacific. 35 (207): 261. Bibcode:1923PASP...35..261H. doi:10.1086/123332.
    10. Shklovskii, I. S. (1980). "Supernovae in Multiple Systems". Soviet Astronomy. 24: 387. Bibcode:1980SvA....24..387S.
    11. Hubble, E. P. (1922). "A general study of diffuse galactic nebulae". Astrophysical Journal. 56: 162–99. Bibcode:1922ApJ....56..162H. doi:10.1086/142698.
    12. Hubble, E. P. (1926). "Extragalactic nebulae". Astrophysical Journal. 64: 321–69. Bibcode:1926ApJ....64..321H. doi:10.1086/143018.
    13. Hubble, Edwin; Humason, Milton L. (1931). "The Velocity-Distance Relation among Extra-Galactic Nebulae". Astrophysical Journal. 74: 43. Bibcode:1931ApJ....74...43H. doi:10.1086/143323.
    14. Burbidge, G. R. (1956). "On Synchrotron Radiation from Messier 87". The Astrophysical Journal. 124: 416. Bibcode:1956ApJ...124..416B. doi:10.1086/146237.
    15. "Hubble follows spiral flow of black-hole-powered jet". ESA/Hubble Press Release. Retrieved 6 September 2013.
    16. Stanley, G. J.; Slee, O. B. (1950). "Galactic Radiation at Radio Frequencies. II. The Discrete Sources". Australian Journal of Scientific Research A. 3 (2): 234. Bibcode:1950AuSRA...3..234S. doi:10.1071/ch9500234.
    17. Baade, W.; Minkowski, R. (1954). "On the Identification of Radio Sources". Astrophysical Journal. 119: 215–31. Bibcode:1954ApJ...119..215B. doi:10.1086/145813.
    18. Drake, Stephen A. "A Brief History of High-Energy Astronomy: 1965 – 1969". NASA HEASARC. Retrieved 28 October 2011.
    19. Charles, P. A.; Seward, F. D. (1995). Exploring the X-ray universe. Cambridge, United Kingdom: Press Syndicate of the University of Cambridge. p. 9. ISBN 0-521-43712-1.
    20. Bradt, H.; Naranan, S.; Rappaport, S.; Spada, G. (1968). "Celestial Positions of X-Ray Sources in Sagittarius". Astrophysical Journal. 152 (6): 1005–13. Bibcode:1968ApJ...152.1005B. doi:10.1086/149613.
    21. Lea, S. M.; Mushotzky, R.; Holt, S. S. (1982). "Einstein Observatory solid state spectrometer observations of M87 and the Virgo cluster". Astrophysical Journal, Part 1. 262: 24–32. Bibcode:1982ApJ...262...24L. doi:10.1086/160392.
    22. Epsilon Virginis is at celestial coordinates α=13h 02m, δ=+10° 57; Denebola is at α=11h 49m, δ=+14° 34. The midpoint of the pair is at α=12h 16m, δ=12° 45. Compare to the coordinates of Messier 87: α=12h 31m, δ=+12° 23.
    23. Cooke, Antony (2005). Visual astronomy under dark skies: a new approach to observing deep space. Patrick Moore's practical astronomy series. London, United Kingdom: Springer-Verlag. pp. 5–37. ISBN 1-85233-901-2.
    24. Clark, Roger Nelson (1990). Visual astronomy of the deep sky. CUP Archive. p. 153. ISBN 0-521-36155-9.
    25. "Visual observations of the M87 jet". Adventures in Deep Space. Astronomy-Mall. Retrieved 7 December 2010.
    26. "Giant Galaxy is Still Growing". European Southern Observatory. 25 June 2015.
    27. 1 2 Park, Kyung-Suk; Chun, Mun-Suk (1987). "Dynamical Structure of NGC 4486". Journal of Astronomy and Space Science. 4 (1): 35–45. Bibcode:1987JASS....4...35P.
    28. Jones, Mark H.; Lambourne, Robert J. (2004). An introduction to galaxies and cosmology. Cambridge University Press. p. 69. ISBN 0-521-54623-0.
    29. Kundu, Arunav; Whitmore, Bradley C. (2001). "New Insights from HST Studies of Globular Cluster Systems. I. Colors, Distances, and Specific Frequencies of 28 Elliptical Galaxies". The Astronomical Journal. 121 (6): 2950–73. arXiv:astro-ph/0103021Freely accessible. Bibcode:2001AJ....121.2950K. doi:10.1086/321073.
    30. 1 2 Chakrabarty, Dalia (2007). "Mass modelling with minimum kinematic information". Monthly Notices of the Royal Astronomical Society. 377 (1): 30–40. arXiv:astro-ph/0702065Freely accessible. Bibcode:2007MNRAS.377...30C. doi:10.1111/j.1365-2966.2007.11583.x.
    31. Oemler, A., Jr. (1976). "The structure of elliptical and cD galaxies". Astrophysical Journal. 209: 693–709. Bibcode:1976ApJ...209..693O. doi:10.1086/154769.
    32. Whitmore, B. C. (15–17 May 1989). "Effect of the Cluster Environment on Galaxies". In William R. Oegerle; Michael J. Fitchett; Laura Danly. Clusters of galaxies: proceedings of the Clusters of Galaxies Meeting. Space Telescope Science Institute symposium series. 4. Baltimore: Cambridge University Press. p. 151. ISBN 0-521-38462-1.
    33. 1 2 Wu, Xiaoan; Tremaine, Scott (2006). "Deriving the Mass Distribution of M87 from Globular Clusters". The Astrophysical Journal. 643 (1): 210–21. arXiv:astro-ph/0508463Freely accessible. Bibcode:2006ApJ...643..210W. doi:10.1086/501515.
    34. 1 2 Cohen, Judith G.; Ryzhov, Anton (1997). "The Dynamics of the M87 Globular Cluster System". Astrophysical Journal. 486 (1): 230–241. arXiv:astro-ph/9704051Freely accessible. Bibcode:1997ApJ...486..230C. doi:10.1086/304518.
    35. 1 2 Murphy, Jeremy D.; Gebhardt, Karl; Adams, Joshua J. (March 2011). "Galaxy Kinematics with VIRUS-P: The Dark Matter Halo of M87". The Astrophysical Journal. 729 (2): 129. arXiv:1101.1957Freely accessible. Bibcode:2011ApJ...729..129M. doi:10.1088/0004-637X/729/2/129.
    36. Merritt, David; Tremblay, Benoit (1993). "The distribution of dark matter in the halo of M87". The Astronomical Journal. 106 (6): 2229–42. Bibcode:1993AJ....106.2229M. doi:10.1086/116796.
    37. Ventrudo, B. (10 June 2008). "M87: Monster Galaxy in Virgo". One Minute Astronomer.
    38. Battaglia, G.; Helmi, A.; Morrison, H.; Harding, P.; Olszewski, E. W.; Mateo, M.; et al. (2005). "The radial velocity dispersion profile of the Galactic halo: Constraining the density profile of the dark halo of the Milky Way". Monthly Notices of the Royal Astronomical Society. 364 (2): 433–42. arXiv:astro-ph/0506102Freely accessible. Bibcode:2005MNRAS.364..433B. doi:10.1111/j.1365-2966.2005.09367.x.
    39. Gebhardt, Karl; Thomas, Jens (August 2009). "The Black Hole Mass, Stellar Mass-to-Light Ratio, and Dark Halo in M87". The Astrophysical Journal. 700 (2): 1690–1701. arXiv:0906.1492Freely accessible. Bibcode:2009ApJ...700.1690G. doi:10.1088/0004-637X/700/2/1690.
    40. Leverington, David (2000). New cosmic horizons: space astronomy from the V2 to the Hubble Space Telescope. Cambridge University Press. p. 343. ISBN 0-521-65833-0.
    41. 1 2 Burns, J. O.; White, R. A.; Haynes, M. P. (1981). "A search for neutral hydrogen in D and cD galaxies". Astronomical Journal. 86: 1120–25. Bibcode:1981AJ.....86.1120B. doi:10.1086/112992.
    42. 1 2 3 4 5 Doherty, M.; Arnaboldi, M.; Das, P.; Gerhard, O.; Aguerri, J. A. L.; Ciardullo, R.; Feldmeier, J. J.; Freeman, K. C.; Jacoby, G. H.; Murante, G. (August 2009). "The edge of the M 87 halo and the kinematics of the diffuse light in the Virgo cluster core". Astronomy and Astrophysics. 502 (3): 771–786. arXiv:0905.1958Freely accessible. Bibcode:2009A&A...502..771D. doi:10.1051/0004-6361/200811532.
    43. 1 2 Klotz, Irene (8 June 2009). "Galaxy's Outer Halo Lopped Off". Discovery News. Retrieved 25 April 2010.
    44. Bland-Hawthorn, Joss; Freeman, Ken (7 January 2000). "The Baryon Halo of the Milky Way: A Fossil Record of Its Formation". Science. 287 (5450): 79–84. Bibcode:2000Sci...287...79B. doi:10.1126/science.287.5450.79. PMID 10615053.
    45. Janowiecki, Steven; et al. (2010). "Diffuse Tidal Structures in the Halos of Virgo Ellipticals". The Astrophysical Journal. 715 (2): 972–85. arXiv:1004.1473Freely accessible. Bibcode:2010ApJ...715..972J. doi:10.1088/0004-637X/715/2/972.
    46. Gavazzi, G.; Boselli, A.; Vílchez, J. M.; Iglesias-Paramo, J.; Bonfanti, C. (2000). "The filament of ionized gas in the outskirt of M87". Astronomy & Astrophysics. 361: 1–4. arXiv:astro-ph/0007323Freely accessible. Bibcode:2000A&A...361....1G.
    47. "Giant Galaxy is Still Growing". European Southern Observatory. Archived from the original on 25 June 2015. Retrieved 25 June 2015.
    48. Longobardi, A; Arnobaldi, M; Gerhard, O; Mihos, J C (2015). "The build-up of the cD halo of M87 – evidence for accretion in the last Gyr". Astronomy & Astrophysics. 579 (3): L3. arXiv:1504.04369Freely accessible. doi:10.1051/0004-6361/201526282.
    49. 1 2 Walsh, Jonelle L.; Barth, Aaron J.; Ho, Luis C.; Sarzi, Marc (2013). "The M87 Black Hole Mass from Gas-dynamical Models of Space Telescope Imaging Spectrograph Observations". The Astrophysical Journal. 770 (2): 86. arXiv:1304.7273Freely accessible. Bibcode:2013ApJ...770...86W. doi:10.1088/0004-637X/770/2/86.
    50. Macchetto, F.; Marconi, A.; Axon, D. J.; Capetti, A.; Sparks, W.; Crane, P. (1997). "The Supermassive Black Hole of M87 and the Kinematics of Its Associated Gaseous Disk". Astrophysical Journal. 489 (2): 579–600. arXiv:astro-ph/9706252Freely accessible. Bibcode:1997ApJ...489..579M. doi:10.1086/304823.
    51. 1 2 Matveyenko, L. I.; Seleznev, S. V. (2011). "Fine core-jet structure of the galaxy M87". Astronomy Letters. 37 (3): 154–70. Bibcode:2011AstL...37..154M. doi:10.1134/S1063773711030030.
    52. Di Matteo, Tiziana; Allen, Steven W.; Fabian, Andrew C.; Wilson, Andrew S.; Young, Andrew J. (2003). "Accretion onto the Supermassive Black Hole in M87". The Astrophysical Journal. 582 (1): 133–40. arXiv:astro-ph/0202238Freely accessible. Bibcode:2003ApJ...582..133D. doi:10.1086/344504.
    53. 1 2 Batcheldor, D.; Robinson, A.; Axon, D. J.; Perlman, E. S.; Merritt, D. (2010). "A Displaced Supermassive Black Hole in M87". The Astrophysical Journal Letters. 717 (1): L6–L10. arXiv:1005.2173Freely accessible. Bibcode:2010ApJ...717L...6B. doi:10.1088/2041-8205/717/1/L6.
    54. Cowen, Ron (9 June 2010). "Black hole shoved aside, along with 'central' dogma". ScienceNews. 177 (13): 9. Retrieved 29 May 2010.
    55. Gehbardt, Karl; et al. (2011). "The Black-Hole Mass in M87 from Gemini/NIFS Adaptive Optics Observations". The Astrophysical Journal. (accepted) (2): 119. arXiv:1101.1954Freely accessible. Bibcode:2011ApJ...729..119G. doi:10.1088/0004-637X/729/2/119.
    56. Dehnen, Walter (15–19 September 1997). "M 87 as a Galaxy". In Hermann-Josef Röser; Klaus Meisenheimer. The radio galaxy Messier 87: proceedings of a workshop. Ringberg Castle, Tegernsee, Germany: Springer. p. 31. Bibcode:1999LNP...530...31D. doi:10.1007/BFb0106415.
    57. Steinicke, Wolfgang; Jakiel, Richard (2007). Galaxies and how to observe them. Astronomers' observing guides. Springer. pp. 32–33. ISBN 1-85233-752-4.
    58. Werner, N.; Böhringer, H.; Kaastra, J. S.; de Plaa, J.; Simionescu, A.; Vink, J. (2006). "XMM-Newton high-resolution spectroscopy reveals the chemical evolution of M 87". Astronomy and Astrophysics. 459 (2): 353–60. arXiv:astro-ph/0608177Freely accessible. Bibcode:2006A&A...459..353W. doi:10.1051/0004-6361:20065678.
    59. "Galactic Chromodynamics". ESO Picture of the Week. Retrieved 14 October 2014.
    60. 1 2 Shi, Y.; et al. (2007). "Thermal and Nonthermal Infrared Emission from M87". The Astrophysical Journal. 655 (2): 781–89. arXiv:astro-ph/0610494Freely accessible. Bibcode:2007ApJ...655..781S. doi:10.1086/510188.
    61. 1 2 Baes, M.; et al. (2010). "The Herschel Virgo Cluster Survey. VI. The far-infrared view of M 87". Astronomy and Astrophysics. 518: 1–4. arXiv:1005.3059Freely accessible. Bibcode:2010A&A...518L..53B. doi:10.1051/0004-6361/201014555.
    62. Clemens, M. S.; et al. (July 2010). "The Herschel Virgo Cluster Survey. III. A constraint on dust grain lifetime in early-type galaxies". Astronomy and Astrophysics. 518: 1–4. arXiv:1005.3056Freely accessible. Bibcode:2010A&A...518L..50C. doi:10.1051/0004-6361/201014533.
    63. Jones, Mark H.; Lambourne, Robert J.; Adams, David John (2004). An introduction to galaxies and cosmology. Cambridge University Press. p. 13. ISBN 0-521-54623-0.
    64. 1 2 Harris, William E.; Harris, Gretchen L. H.; McLaughlin, Dean E. (1998). "M87, Globular Clusters, and Galactic Winds: Issues in Giant Galaxy Formation". The Astronomical Journal. 115 (5): 1801–22. arXiv:astro-ph/9801214Freely accessible. Bibcode:1998AJ....115.1801H. doi:10.1086/300322. The authors give a metallicity of:
      within a 3 kpc radius of the galactic core.
    65. Tamura, Naoyuki; Sharples, Ray M.; Arimoto, Nobuo; Onodera, Masato; Ohta, Kouji; Yamada, Yoshihiko (2006). "A Subaru/Suprime-Cam wide-field survey of globular cluster populations around M87 – I. Observation, data analysis and luminosity function". Monthly Notices of the Royal Astronomical Society. 373 (2): 588–600. arXiv:astro-ph/0609067Freely accessible. Bibcode:2006MNRAS.373..588T. doi:10.1111/j.1365-2966.2006.11067.x.
    66. Madrid, Juan P.; Harris, William E.; Blakeslee, John P.; Gómez, Matías (2009). "Structural Parameters of the Messier 87 Globular". The Astrophysical Journal. 705 (1): 237–44. arXiv:0909.0272Freely accessible. Bibcode:2009ApJ...705..237M. doi:10.1088/0004-637X/705/1/237. See Fig. 6. for a plot of the effective cluster radius versus galactocentric distance.
    67. Nelson Caldwell; Jay Strader; Aaron J. Romanowsky; Jean P. Brodie; Ben Moore; Jurg Diemand; Davide Martizzi (25 February 2014). "A Globular Cluster Toward M87 with a Radial Velocity < -1000 km/s: The First Hypervelocity Cluster". The Astrophysical Journal Letters. 787: L11. arXiv:1402.6319Freely accessible. Bibcode:2014ApJ...787L..11C. doi:10.1088/2041-8205/787/1/L11 (inactive 2016-11-02).
    68. Aguilar.D.A; et al. "Entire Star Cluster Thrown Out of its Galaxy". Harvard-Smithsonian Center for Astrophysics.
    69. Zhang, Hong-Xin; Peng, Eric W.; Côté, Patrick; Liu, Chengze; Ferrarese, Laura; Cuillandre, Jean-Charles; Caldwell, Nelson; Gwyn, Stephen D. J.; Jordán, Andrés; Lançon, Ariane; Li, Biao; Muñoz, Roberto P.; Puzia, Thomas H.; Bekki, Kenji; Blakeslee, John P.; Boselli, Alessandro; Drinkwater, Michael J.; Duc, Pierre-Alain; Durrell, Patrick; Emsellem, Eric; Firth, Peter; Sánchez-Janssen, Rubén (2015). "The Next Generation Virgo Cluster Survey. VI. The Kinematics of Ultra-compact Dwarfs and Globular Clusters in M87". The Astrophysical Journal. 802 (1): 26. arXiv:1501.03167Freely accessible. Bibcode:2015ApJ...802...30Z. doi:10.1088/0004-637X/802/1/30. 30.
    70. 1 2 Doeleman, S. S.; Fish, V. L.; Schenck, D. E.; Beaudoin, C.; Blundell, R.; Bower, G. C.; Broderick, A. E.; Chamberlin, R.; Freund, R.; Friberg, P.; Gurwell, M. A.; Ho, P. T. P.; Honma, M.; Inoue, M.; Krichbaum, T. P.; Lamb, J.; Loeb, A.; Lonsdale, C.; Marrone, D. P.; Moran, J. M.; Oyama, T.; Plambeck, R.; Primiani, R. A.; Rogers, A. E. E.; Smythe, D. L.; Soohoo, J.; Strittmatter, P.; Tilanus, R. P. J.; Titus, M.; Weintroub, J. (2012). "Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87". Science. 338 (6105): 355–358. arXiv:1210.6132Freely accessible. Bibcode:2012Sci...338..355D. doi:10.1126/science.1224768. PMID 23019611.
    71. Kovalev, Y. Y.; Lister, M. L.; Homan, D. C.; Kellermann, K. I. (2007). "The Inner Jet of the Radio Galaxy M87". The Astrophysical Journal. 668 (1): L27–L30. arXiv:0708.2695Freely accessible. Bibcode:2007ApJ...668L..27K. doi:10.1086/522603.
    72. Sparks, William B.; Fraix-Burnet, D.; Macchetto, F.; Owen, F. N. (27 February 1992). "A counterjet in the elliptical galaxy M87". Nature. 355 (6363): 804–06. Bibcode:1992Natur.355..804S. doi:10.1038/355804a0.
    73. Klein, Uli (15–19 September 1997). "The Large-Scale Structure of Virgo A". In Hermann-Josef Röser; Klaus Meisenheimer. The radio galaxy Messier 87. Lecture notes in physics. 530. Ringberg Castle, Tegernsee, Germany: Springer. Bibcode:1999LNP...530...56K. doi:10.1007/BFb0106418.
    74. Baldwin, J. E.; Smith, F. G. (1956). "Radio emission from the extragalactic nebula M87". The Observatory. 76: 141–44. Bibcode:1956Obs....76..141B.
    75. Biretta, J. A.; Sparks, W. B.; Macchetto, F. (August 1999). "Hubble Space Telescope Observations of Superluminal Motion in the M87 Jet". The Astrophysical Journal. 520 (2): 621–26. Bibcode:1999ApJ...520..621B. doi:10.1086/307499.
    76. Biretta, John (6 January 1999). "Hubble detects faster-than-light motion in Galaxy M87". Baltimore, Maryland: Space Telescope Science Institute. Retrieved 28 December 2010.
    77. Tsvetanov, Zlatan I.; Hartig, George F.; Ford, Holland C.; Dopita, Michael A.; Kriss, Gerard A.; Pei, Yichuan C.; Dressel, Linda L.; Harms, Richard J. (1998). "M87: A Misaligned BL LAC?". Astrophysical Journal. 493 (2): L83–L86. arXiv:astro-ph/9711241Freely accessible. Bibcode:1998ApJ...493L..83T. doi:10.1086/311139.
    78. Reimer, A.; Protheroe, R. J.; Donea, A. .-C. (July 2003). "M87 as a Misaligned Synchrotron-Proton Blazar". Proceedings of the 28th International Cosmic Ray Conference. 5: 2631. Bibcode:2003ICRC....5.2631R.
    79. Roy, Steve; Watzke, Megan (October 2006). "Chandra Reviews Black Hole Musical: Epic But Off-Key". Chandra. Harvard-Smithsonian Center for Astrophysics. Retrieved 25 April 2010.
    80. Wirsing, Bernd (26 October 2006). "Discovery of Gamma Rays from the Edge of a Black Hole". Max Planck Society. Retrieved 3 December 2010.
    81. Harris, D. E.; Cheung, C. C.; Biretta, J. A.; Sparks, W. B.; Junor, W.; Perlman, E. S.; Wilson, A. S. (2006). "The Outburst of HST-1 in the M87 Jet". The Astrophysical Journal. 640 (1): 211–18. arXiv:astro-ph/0511755Freely accessible. Bibcode:2006ApJ...640..211H. doi:10.1086/500081.
    82. Harris, D. E.; Cheung, C. C.; Stawarz, L. (January 2009). "Variability Timescales in the M87 Jet: Signatures of E Squared Losses, Discovery of a Quasi-period in HST-1, and the Site of TeV Flaring". Bulletin of the American Astronomical Society. 41: 393. arXiv:0904.3925Freely accessible. Bibcode:2009AAS...21333207H.
    83. 1 2 Côté, Patrick; et al. (July 2004). "The ACS Virgo Cluster Survey. I. Introduction to the Survey". The Astrophysical Journal Supplement Series. 153 (1): 223–42. arXiv:astro-ph/0404138Freely accessible. Bibcode:2004ApJS..153..223C. doi:10.1086/421490.
    84. "VIRGO CLUSTER". NASA-IPAC Extragalactic Database (NED). Retrieved 2012-12-25.
    85. Binggeli, Bruno; Tammann, G. A.; Sandage, Allan (August 1987). "Studies of the Virgo cluster. VI – Morphological and kinematical structure of the Virgo cluster". Astronomical Journal. 94: 251–77. Bibcode:1987AJ.....94..251B. doi:10.1086/114467.

    Media related to Messier 87 at Wikimedia Commons

    Coordinates: 12h 30m 49.4s, +12° 23′ 28″

    This article is issued from Wikipedia - version of the 11/2/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.