Aurophilicity
In chemistry, aurophilicity refers to the tendency of gold complexes to aggregate via formation of weak gold-gold bonds.[1][2]
The main evidence for aurophilicity is from the crystallographic analysis of Au(I) complexes. The aurophilic bond is assigned a length of about 3.0 Å and a strength of about 7–12 kcal/mol,[1] which is comparable to the strength of a hydrogen bond. The aurophilic interaction is thought to result from electron correlation of the closed-shell components, which is unusual because closed-shell atoms generally have negligible interaction with one another at distances on the scale of the Au-Au bond. This is somewhat similar to van der Waals interactions, but is unusually strong due to relativistic effects. Observations and theory show that, on average, 28% of the binding energy in aurophilic interaction can be attributed to relativistic expansion of the gold d orbitals.[3]
An example of aurophilicity is the propensity of gold centres to aggregate. While both intra- and inter-molecular aurophilic interactions have been observed, only intramolecular aggregation has been observed at such nucleation sites.[4]
Role in self-assembly
The similarity in strength between hydrogen bonding and aurophilic interaction has proven to be a convenient tool in the field of polymer chemistry. Much research has been conducted on self-assembling supermolecular structures, both those that aggregate by aurophilicity alone and those that contain both aurophilic and hydrogen-bonding interactions.[5] An important and exploitable property of aurophilic interactions relevant to their supermolecular chemistry is that while both inter- and intramolecular interactions are possible, intermolecular aurophilic linkages are comparatively weak and easily broken by solvation; most complexes that exhibit intramolecular aurophilic interactions retain such moieties in solution.[1]
Similar metallophilic interactions exist for other heavy metals, such as mercury and palladium, and can also be observed between atoms of different elements. Examples include Pd(II)-Pd(I),Pt(II)-Pd(I),[6] Hg(II)-Au(I), Hg(II)-Pt(II), and Hg(II)-Pd(II).[7] In accordance with theoretical calculations, which predict a local maximum for relevant relativistic effects for gold atoms, none of these other interactions are as strong as aurophilicity.[1][8] Although metallophilic interactions are not inherently relativistic in their nature, they are complemented by it.
References
- 1 2 3 4 5 6 Hubert Schmidbaur (2000). "The Aurophilicity Phenomenon: A Decade of Experimental Findings, Theoretical Concepts and Emerging Application". Gold Bulletin. 33 (1): 3–10. doi:10.1007/BF03215477.
- ↑ Hubert Schmidbaur (1995). "Ludwig Mond Lecture. High-carat gold compounds". Chem. Soc. Rev. 24 (6): 391–400. doi:10.1039/CS9952400391.
- ↑ Nino Runeberg; Martin Schütz & Hans-Joachim Werner (1999). "The aurophilic attraction as interpreted by local correlation methods". J. Chem. Phys. 110 (15): 7210–7215. Bibcode:1999JChPh.110.7210R. doi:10.1063/1.478665.
- ↑ Hubert Schmidbaur; Stephanie Cronje; Bratislav Djordjevic & Oliver Schuster (2005). "Understanding gold chemistry through relativity". J. Chem. Phys. 311: 151–161. Bibcode:2005CP....311..151S. doi:10.1016/j.chemphys.2004.09.023.
- ↑ William J. Hunks; Michael C. Jennings & Richard J. Puddephatt (2002). "Supramolecular Gold(I) Thiobarbiturate Chemistry: Combining Aurophilicity and Hydrogen Bonding to Make Polymers, Sheets, and Networks". Inorg. Chem. 41 (17): 4590–4598. doi:10.1021/ic020178h.
- ↑ Yin, Xi; Warren, Steven A.; Pan, Yung-Tin; Tsao, Kai-Chieh; Gray, Danielle L.; Bertke, Jeffery; Yang, Hong (15 December 2014). "A Motif for Infinite Metal Atom Wires". Angewandte Chemie International Edition. 53 (51): 14087–14091. doi:10.1002/anie.201408461.
- ↑ Kim Mieock; Taylor Thomas J.; Gabbai François P. (2008). "Hg(II)···Pd(II) Metallophilic Interactions". J. Am. Chem. Soc. 130 (20): 6332–6333. doi:10.1021/ja801626c. PMID 18433123.
- ↑ Behnam Assadollahzadeh & Peter Schwerdtfege (2008). "A comparison of metallophilic interactions in group 11[X–M–PH3]n (n = 2–3) complex halides (M = Cu, Ag, Au; X = Cl, Br, I) from density functional theory". Chemical Physics Letters. 462 (4–6): 222–228. Bibcode:2008CPL...462..222A. doi:10.1016/j.cplett.2008.07.096.