Bone char
Pills of bone char | |
Names | |
---|---|
Other names
| |
Identifiers | |
8021-99-6 | |
ECHA InfoCard | 100.029.470 |
EC Number | 232-421-2 |
Properties | |
Appearance | black powder |
Density | 0.7 - 0.8 g/cm3 |
insoluble | |
Acidity (pKa) | 8.5 - 10.0 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
Infobox references | |
Bone char (Latin: carbo animalis) is a porous, black, granular material produced by charring animal bones. Its composition varies depending on how it is made; however, it consists mainly of tricalcium phosphate (or hydroxylapatite) 57–80%, calcium carbonate 6–10% and activated carbon 7–10%.[1] It is primarily used for filtration and decolorization.
Production
Bone char is primarily made from cow bones; however, to prevent the spread of Creutzfeldt–Jakob disease, the skull and spine are never used.[2] The bones are heated in a sealed vessel at up to 700 °C (1,292 °F); a low concentration of oxygen must be maintained while doing this, as it affects the quality of the product, particularly its adsorption capacity. Most of the organic material in the bones is driven off by heat, and was historically collected as Dippel's oil; that which is not driven off remains as activated carbon in the final product. Heating bones in an oxygen-rich atmosphere gives bone ash, which is chemically quite different.
Used bone char can be regenerated by washing with hot water to remove impurities, followed by heating to 500 °C (932 °F) in a kiln with a controlled amount of air.
Uses
Water treatment
The tricalcium phosphate in bone char can be used to remove fluoride[3] and metal ions from water, making it useful for the treatment of drinking supplies. Bone charcoal is the oldest known water defluoridation agent and was widely used in the United States from the 1940s through to the 1960s.[4] As it can be generated cheaply and locally it is still used in certain developing countries, such as Tanzania.[5] Bone chars usually have lower surface areas than activated carbons, but present high adsorptive capacities for certain metals, particularly those from group 12 (copper, zinc, and cadmium).[6] Other highly toxic metal ions, such as those of arsenic[7] and lead[8] may also be removed.
Sugar refining
Historically, bone char was often used in sugar refining as a decolorising and deashing agent, particularly in cane sugar as this contains more colored impurities. It has largely fallen out of use, particularly in the US and Europe, mainly for economic reasons but also due to the concerns of vegetarians and vegans, as well as various religious groups.
Bone char possesses a low decoloration capacity and must be used in large quantities,[9] however, it is also able to remove various inorganic impurities; most importantly sulfates and the ions of magnesium and calcium. The removal of these is beneficial, as it reduces the level of scaling later in the refining process, when the sugar solution is concentrated.[10] Modern alternatives to bone char include activated carbon and ion-exchange resins.
Black pigment
Bone char is also used as a black pigment for artist's paint, printmaking, calligraphic and drawing inks as well as other artistic applications because of its deepness of color and excellent tinting strength. Bone black and ivory black are artists' pigments which are in use since historic times by painters such as Rembrandt and Velázquez but also more recently by Manet or Picasso. The black dresses and high hats of the gentlemen in Manet's Music in the Tuileries are painted in ivory black.[11][12]
Ivory black was formerly made by grinding charred ivory in oil. Today ivory black is considered a synonym for bone black. Actual ivory is no longer used because of the expense and because animals who are natural sources of ivory are subject to international control as endangered species.
Niche uses
- It is used to refine crude oil in the production of petroleum jelly.
- In the 18th and 19th century, bone char mixed with tallow or wax (or both) were used by soldiers in the field to impregnate military leather equipment, both to increase its lifespan and as the simplest way to obtain pigment for black leatherwares.
In popular culture
- The production of bone char was featured on the Discovery Channel's TV series Dirty Jobs, on episode 24 of season 4, "Bone Black", originally broadcast on 9 February 2010.[2]
- Human bone char, referred to as "bone charcoal," is mentioned in Thomas Pynchon's novel The Crying of Lot 49. The bones come from US soldiers who died in combat during WWII and were buried in a lake in Italy, and the char is used for filters in cigarettes.
See also
References
- ↑ Fawell, John (2006). Fluoride in drinking-water (1st published. ed.). Geneva: WHO. p. 47. ISBN 9241563192.
- 1 2 "Dirty Jobs: Episode Guide"
- ↑ Medellin-Castillo, Nahum A.; Leyva-Ramos, Roberto; Ocampo-Perez, Raul; Garcia de la Cruz, Ramon F.; Aragon-Piña, Antonio; Martinez-Rosales, Jose M.; Guerrero-Coronado, Rosa M.; Fuentes-Rubio, Laura (December 2007). "Adsorption of Fluoride from Water Solution on Bone Char". Industrial & Engineering Chemistry Research. 46 (26): 9205–9212. doi:10.1021/ie070023n.
- ↑ Horowitz, HS; Maier, FJ; Law, FE (Nov 1967). "Partial defluoridation of a community water supply and dental fluorosis.". Public Health Reports. 82 (11): 965–72. doi:10.2307/4593174. PMC 1920070. PMID 4964678.
- ↑ Mjengera, H.; Mkongo, G. (January 2003). "Appropriate deflouridation technology for use in flourotic areas in Tanzania". Physics and Chemistry of the Earth, Parts A/B/C. 28 (20-27): 1097–1104. doi:10.1016/j.pce.2003.08.030.
- ↑ Ko, Danny C.K.; Porter, John F.; McKay, Gordon (December 2000). "Optimised correlations for the fixed-bed adsorption of metal ions on bone char". Chemical Engineering Science. 55 (23): 5819–5829. doi:10.1016/S0009-2509(00)00416-4.
- ↑ Chen, Yun-Nen; Chai, Li-Yuan; Shu, Yu-De (December 2008). "Study of arsenic(V) adsorption on bone char from aqueous solution". Journal of Hazardous Materials. 160 (1): 168–172. doi:10.1016/j.jhazmat.2008.02.120.
- ↑ Deydier, Eric; Guilet, Richard; Sharrock, Patrick (July 2003). "Beneficial use of meat and bone meal combustion residue: "an efficient low cost material to remove lead from aqueous effluent"". Journal of Hazardous Materials. 101 (1): 55–64. doi:10.1016/S0304-3894(03)00137-7.
- ↑ Asadi, Mosen (2006). Beet-Sugar Handbook. Hoboken: John Wiley & Sons. p. 333. ISBN 9780471790983.
- ↑ Chou, ed. by Chung Chi (2000). Handbook of sugar refining : a manual for the design and operation of sugar refining facilities. New York, NY [u.a.]: Wiley. pp. 368–369. ISBN 9780471183570.
- ↑ Bomford D, Kirby J, Leighton, J., Roy A., Art in the Making: Impressionism. National Gallery Publications, London, 1990, pp. 112-119
- ↑ Édouard Manet, 'Music in the Tuileries Gardens', ColourLex
External links
- "Blacks". Encyclopedia Americana. 1920.
- Ivory black, ColourLex
- Bone black, ColourLex