Dichroic filter
A dichroic filter, thin-film filter, or interference filter is a very accurate color filter used to selectively pass light of a small range of colors while reflecting other colors. By comparison, dichroic mirrors and dichroic reflectors tend to be characterized by the color(s) of light that they reflect, rather than the color(s) they pass. (See dichroism for the etymology of the term.)
Dichroic filters can filter light from a white light source to produce light that is perceived by humans to be highly saturated (intense) in color. Although costly, such filters are popular in architectural[1] and theatrical applications.
Dichroic reflectors are commonly used behind a light source to reflect visible light forward while allowing the invisible infrared light (radiated heat) to pass out of the rear of the fixture, resulting in a beam of light that is literally cooler (of lower thermal temperature). Such an arrangement allows a given light to dramatically increase its forward intensity while allowing the heat generated by the backward-facing part of the fixture to escape. Many quartz halogen bulbs have an integrated dichroic reflector for this purpose, being originally designed for use in slide projectors to avoid melting the slides, but now widely used for interior home and commercial lighting. This improves whiteness by removing excess red; however, it poses a serious fire hazard if used in recessed or enclosed luminaires by allowing infrared radiation into those luminaires. For these applications non cool beam (ALU or Silverback) lamps must be used.
Theory
Dichroic filters use the principle of thin-film interference, and produce colors in the same way as oil films on water. When light strikes an oil film at an angle, some of the light is reflected from the top surface of the oil, and some is reflected from the bottom surface where it is in contact with the water. Because the light reflecting from the bottom travels a slightly longer path, some light wavelengths are reinforced by this delay, while others tend to be canceled, producing the colors seen.
In a dichroic mirror or filter, instead of using an oil film to produce the interference, alternating layers of optical coatings with different refractive indices are built up upon a glass substrate. The interfaces between the layers of different refractive index produce phased reflections, selectively reinforcing certain wavelengths of light and interfering with other wavelengths. The layers are usually added by vacuum deposition. By controlling the thickness and number of the layers, the frequency (wavelength) of the passband of the filter can be tuned and made as wide or narrow as desired. Because unwanted wavelengths are reflected rather than absorbed, dichroic filters do not absorb this unwanted energy during operation and so do not become nearly as hot as the equivalent conventional filter (which attempts to absorb all energy except for that in the passband). (See Fabry–Pérot interferometer for a mathematical description of the effect.)
Where white light is being deliberately separated into various color bands (for example, within a color video projector or color television camera), the similar dichroic prism is used instead. For cameras, however it is now more common to have an absorption filter array to filter individual pixels on a single CCD array.
Applications
Recessed or enclosed luminaires that are unsuitable for use with dichroic reflector lights can be identified by the IEC 60598 No Cool Beam symbol.
In fluorescence microscopy, dichroic filters are used as beam splitters to direct illumination of an excitation frequency toward the sample and then at an analyzer to reject that same excitation frequency but pass a particular emission frequency.
Some LCD projectors use dichroic filters instead of prisms to split the white light from the lamp into the three colours before passing it through the three LCD units.
They are used as laser harmonic separators. They separate the various harmonic components of frequency doubled laser systems by selective spectral reflection and transmission.
Dichroic filters are also used to create gobos for high-power lighting products. Pictures are made by overlapping up to four colored dichroic filters.
Photographic enlarger color heads use dichoric filters to adjust the color balance in the print.
Advantages
- Much better filtering characteristics than conventional filters
- Ability to easily fabricate a filter to pass any passband frequency and block a selected amount of the stopband frequencies (saturation)
- Because light in the stopband is reflected rather than absorbed, there is much less heating of the dichroic filter than with conventional filters
- Much longer life than conventional filters; the color is intrinsic in the construction of the hard microscopic layers and cannot "bleach out" over the lifetime of the filter (unlike for example, gel filters)
- Filter will not melt or deform except at very high temperatures (many hundreds of degrees Celsius)
- Capable of achieving extremely high laser damage thresholds (dichroics are used for all the mirrors on the world's most powerful laser, the National Ignition Facility)
Disadvantages
- Higher initial cost (sometimes much higher)
- Glass dichroic filters are more fragile than plastic conventional filters
- Small scratches or patches of skin oil can badly degrade performance of a dichroic, instead of the graded loss of performance for a conventional plastic filter
- Can reflect light back into an optical system
- Specific bandpass depends on incidence angle (can be an advantage in some applications where in situ tuning is desired)
Other uses
Artistic glass jewelry is occasionally fabricated to behave as a dichroic filter. Because the wavelength of light selected by the filter varies with the angle of incidence of the light, such jewelry often has an iridescent effect, changing color as the (for example) earrings swing. Another interesting application of dichroic filters is spatial filtering.[2]
With a technique licensed from Infitec, Dolby Labs uses dichroic filters for screening 3D movies. The left lens of the Dolby 3D glasses transmits specific narrow bands of red, green and blue frequencies, while the right lens transmits a different set of red, green and blue frequencies. The projector uses matching filters to display the images meant for the left and right eyes.[3]
Long-pass dichroic filters applied to ordinary lighting can prevent it from attracting insects. In some cases, such filters can prevent attraction of other wildlife, reducing adverse environmental impact.[4]
See also
- Color gel
- Dielectric mirror
- Fabry–Pérot interferometer or Etalon for a mathematical description
- Filter (optics)
- Holographic Versatile Disc
- Thin-film optics
References
- ↑ The Copenhagen Opera House
- ↑ Optics Letters
- ↑ http://www.cnet.com.au/dolby-stakes-its-claim-in-3d-movie-tech-339282656.htm
- ↑ Witherington, Blair E.; Martin, R. Erik (2003). "Understanding, Assessing, and Resolving Light-Pollution Problems on Sea Turtle Nesting Beaches" (pdf). Florida Marine Research Institute Technical Report TR-2 (3rd ed.). Florida Fish and Wildlife
Conservation Commission: 23. ISSN 1092-194X. line feed character in
|publisher=
at position 26 (help)
Further reading
- MacLeod, H. Angus (2010). Thin-Film Optical Filters (4th ed.). Taylor & Francis. ISBN 978-1420073027.
- Moreno, Ivan; Araiza, JJ; Avendano-Alejo, M (2005). "Thin-film spatial filters". Optics Letters. 30 (8): 914–6. Bibcode:2005OptL...30..914M. doi:10.1364/OL.30.000914. PMID 15865397.