Frosty Leo Nebula

Frosty Leo Nebula
Reflection nebula
Protoplanetary nebula

Observation data: J2000 epoch
Right ascension 09h 39m 53.96s[1]
Declination +11° 58 52.4[1]
Distance 10,000[2] ly   (3,000 pc)
Apparent magnitude (V) 11[3]
Apparent dimensions (V) 25[4]
Constellation Leo
Notable features Crystalline Ice, Point
Reflection Symmetry
Designations IRAS 09371+1212[1]

The Frosty Leo Nebula is a protoplanetary nebula (PPN) located roughly at 10,000 light-years (Davis et al. 2005) away from Earth in the direction of the constellation Leo. It is a spectral[4] bipolar nebula. Its central star is of optical spectral type K7II,[2] by itself called Frosty Leo.[5] It is unusual in that it has an extremely deep absorption feature at 3.1 µm and is unusually located at more than 900 pc above the plane of our galaxy.(Bourke et al. 2000) Further, as of 1990, it has the only known PPN circumstellar outflow in which crystalline ice dominates the long-wavelength emission spectrum and the only known PPN with point-reflection-symmetric deviations from axial symmetry.[6]

Characteristics

The Frosty Leo Nebula has two lobes that are separated by 2 between which is an almost edge-on dust ring.[6] It also has two relatively faint but prominent compact nebulosities, or ansae, separated by ~23 along the polar axis of the PPN.[6] The PPN as a whole has an hourglass like shape. It has an inclination angle of 15° relative to the plane of the sky.[2] Its molecular envelope is expanding at a rate of ~25 km/s.[7]

Observation history

This PPN was first noticed in the IRAS survey due to its exceptionally cold IRAS color temperatures.[6] It also has a uniquely sharp maximum at 60-μM.[7]

Point symmetry

It is the first bipolar PPN known to have point reflection symmetry (all others being axially symmetric).[6] Point symmetry is a fairly common trait of planetary nebulae as found in NGC 2022, NGC 2371-2, NGC 6309, Cat's Eye Nebula, NGC 6563, Dumbbell Nebula, Saturn Nebula, A24, and Hb5.[6] Morris & Reipurth 1990 postulate that point symmetry is either due to the bipolar outflow being directed by a precessing disc or a precessing common envelope binary.

Naming

Forveille et al. 1987 dubbed IRAS 09371+1212 as the "Frosty Leo Nebula" because of their interpretation of the object's extremely unusual far infrared spectrum that water is largely depleted in its gaseous state by ice condensation into grains and for its location in the Leo constellation. Their interpretation was subsequently verified in 1988 by three independent papers.[6] Omont et al. 1990 further observed in the band between 35 and 65 μM that very cold (<50 K) silicate dust grains, abundantly coated with crystalline ice, are responsible for the 60-μM excess.[6]

Notes

References

Wikimedia Commons has media related to Frosty Leo Nebula.
This article is issued from Wikipedia - version of the 8/1/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.