Heliotropism

Heliotropism, a form of tropism, is the diurnal motion or seasonal motion of plant parts (flowers or leaves) in response to the direction of the sun. The habit of some plants to move in the direction of the sun was already known by the Ancient Greeks. They named one of those plants after that property Heliotropium, meaning sun turn. The Greeks assumed it to be a passive effect, presumably the loss of fluid on the illuminated side, that did not need further study.[1] Aristotle's logic that plants are passive and immobile organisms prevailed. In the 19th century, however, botanists discovered that growth processes in the plant were involved, and conducted increasingly ingenious experiments. A. P. de Candolle called this phenomenon in any plant heliotropism (1832).[2] It was renamed phototropism in 1892, because it is a response to light rather than to the sun, and because the phototropism of algae in lab studies at that time strongly depended on the brightness (positive phototropic for weak light, and negative phototropic for bright light, like sunlight).[3][4] A botanist studying this subject in the lab, at the cellular and subcellular level, or using artificial light, is more likely to employ the more abstract word phototropism. The French scientist Jean-Jacques d'Ortous de Mairan was one of the first to study heliotropism when he experimented with the Mimosa pudica plant.

Floral heliotropism

Heliotropic flowers track the sun's motion across the sky from east to west. During the night, the flowers may assume a random orientation, while at dawn they turn again toward the east where the sun rises. The motion is performed by motor cells in a flexible segment just below the flower, called a pulvinus. The motor cells are specialized in pumping potassium ions into nearby tissues, changing their turgor pressure. The segment flexes because the motor cells at the shadow side elongate due to a turgor rise. Heliotropism is a response to light from the sun.

Several hypotheses have been proposed for the occurrence of heliotropism in flowers:

In general, flower heliotropism could increase reproductive success by increasing pollination, fertilization success, and/or seed development,[8] especially in the spring flowers.

Some solar tracking plants are not purely heliotropic: in those plants the change of orientation is an innate circadian motion triggered by light, which continues for one or more periods if the light cycle is interrupted.

Tropical convolvulaceous flowers show a preferred orientation, pointing in the general direction of the sun but not exactly tracking the sun. They demonstrated no diurnal heliotropism but strong seasonal heliotropism. If solar tracking is exact, the sun’s rays would always enter the corolla tube and warm the gynoecium, a process which could be dangerous in a tropical climate. However, by adopting a certain angle away from the solar angle, this is prevented. The trumpet shape of these flowers thus acts as a parasol shading the gynoecium at times of maximum solar radiation, and not allowing the rays to impinge on the gynoecium.[9]

In case of sunflower, a common misconception is that sunflower heads track the Sun across the sky. The uniform alignment of the flowers does result from heliotropism in an earlier development stage, the bud stage, before the appearance of flower heads. The buds are heliotropic until the end of the bud stage, and finally face east. The flower of the sunflower preserves the final orientation of the bud, thus keeping the mature flower facing east.

Leaf heliotropism

Leaf heliotropism is the solar tracking behavior of plant leaves. Some plant species have leaves that orient themselves perpendicularly to the sun's rays in the morning (diaheliotropism), and others have those that orient themselves parallel to these rays at midday (paraheliotropism).[10] Floral heliotropism is not necessarily exhibited by the same plants that exhibit leaf heliotropism.

References

  1. Whippo, Craig W. (2006). "Phototropism: Bending towards Enlightenment". The Plant Cell. 18 (5): 1110–1119. doi:10.1105/tpc.105.039669. PMC 1456868Freely accessible. PMID 16670442. Retrieved 2012-08-08.
  2. Hart, J.W. (1990). Plant Tropisms: And other Growth Movements. Springer. p. 36. Retrieved 2012-08-08.
  3. "Phototropism and photomorphogenesis of Vaucheria".
  4. Donat-Peter Häder; Michael Lebert (2001). Photomovement. Elsevier. p. 676. Retrieved 2012-08-08.
  5. Hocking B.; Sharplin D. (1965). "Flower basking by arctic insects" (PDF). Nature. 206 (4980): 206–215. doi:10.1038/206215b0.
  6. Kevan, P.G. (1975). "Sun-tracking solar furnaces in high arctic flowers: significance for pollination and insects.". Science. 189 (4204): 723–726. doi:10.1126/science.189.4204.723.
  7. Lang A.R.G.; Begg J.E. (1979). "Movements of Helianthus annuus leaves and heads". J Appl Ecol. 16: 299–305. doi:10.2307/2402749.
  8. Kudo, G. (1995). "Ecological Significance of Flower Heliotropism in the Spring Ephemeral Adonis ramosa (Ranunculaceae)". Oikos. 72 (1): 14–20. doi:10.2307/3546032.
  9. Patiño, S.; Jeffree, C.; Grace, J. (2002). "The ecological role of orientation in tropical convolvulaceous flowers" (PDF). Oecologia. 130: 373–379. doi:10.1007/s00442-001-0824-1.
  10. officially replaced by diaphototropism and paraphototropism

External links

This article is issued from Wikipedia - version of the 11/25/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.