Leap year starting on Thursday

A leap year starting on Thursday is any year with 366 days (i.e. it includes 29 February) that begins on Thursday, 1 January, and ends on Friday, 31 December. Its dominical letter hence is DC, such as the years 1948, 1976, 2004, 2032, 2060 in the Gregorian calendar[1] or, likewise, 1988 and 2016 in the obsolete Julian calendar.

Calendars

Calendar for any leap year starting on Thursday,
presented as common in many English-speaking areas

010203
04050607080910
11121314151617
18192021222324
25262728293031
 
01020304050607
08091011121314
15161718192021
22232425262728
29  
 
010203040506
07080910111213
14151617181920
21222324252627
28293031  
 
010203
04050607080910
11121314151617
18192021222324
252627282930
 
01
02030405060708
09101112131415
16171819202122
23242526272829
3031  
0102030405
06070809101112
13141516171819
20212223242526
27282930  
 
010203
04050607080910
11121314151617
18192021222324
25262728293031
 
01020304050607
08091011121314
15161718192021
22232425262728
293031  
 
01020304
05060708091011
12131415161718
19202122232425
2627282930  
 
0102
03040506070809
10111213141516
17181920212223
24252627282930
31  
010203040506
07080910111213
14151617181920
21222324252627
282930  
 
01020304
05060708091011
12131415161718
19202122232425
262728293031  
 

ISO 8601-conformant calendar with week numbers for
any leap year starting on Thursday (dominical letter DC)

01020304
05060708091011
12131415161718
19202122232425
262728293031  
 
01020304
05060708091011
12131415161718
19202122232425
2627282930  
 
01020304
05060708091011
12131415161718
19202122232425
262728293031  
 
010203
04050607080910
11121314151617
18192021222324
25262728293031
 
01
02030405060708
09101112131415
16171819202122
23242526272829
 
0102
03040506070809
10111213141516
17181920212223
24252627282930
31  
01
02030405060708
09101112131415
16171819202122
23242526272829
3031  
01020304050607
08091011121314
15161718192021
22232425262728
2930  
 
01020304050607
08091011121314
15161718192021
22232425262728
293031  
 
010203040506
07080910111213
14151617181920
21222324252627
282930  
 
0102030405
06070809101112
13141516171819
20212223242526
27282930  
 
0102030405
06070809101112
13141516171819
20212223242526
2728293031  
 

Applicable years

Gregorian Calendar

The 15 types of years repeat in a 400-year cycle (20871 weeks) in the Gregorian calendar. 43 common years per cycle or exactly 3.25 % start on a Thursday. For this kind of year, the corresponding ISO year has 53 weeks, and the ISO week 10 (which begins March 1) and all subsequent ISO weeks occur earlier than in all other years. That means, moveable holidays may occur one calendar week later than otherwise possible, e.g. Gregorian Easter Sunday in week 17 about once per leap cycle.

Gregorian leap years starting on Thursday[1]
Decade 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
17th century 1604 1632 1660 1688
18th century 1728 1756 1784
19th century 1824 1852 1880
20th century 1920 1948 1976
21st century 2004 2032 2060 2088

Julian Calendar

Like all leap year types, the one starting with 1 January on a Thursday occurs exactly once in a 28-year cycle in the Julian calendar, i.e. in 3.57 percent of years.

Sequence of year types in the Julian calendar
Year 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
DL G F E DC B* A G FE D C B AG F E D CB A G F ED C B A GF E D C BA
1 Jan Mo Tu We Th Sa Su Mo Tu Th Fr Sa Su Tu We Th Fr Su Mo Tu We Fr Sa Su Mo We Th Fr Sa
31 Dec Fr We Mo Sa Th Tu Su

The final two digits of Julian years repeat after 700 years, i.e. 25 cycles.

Julian leap years starting on Thursday
Decade 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
15th century 1428 1456 1484
16th century 1512 1540 1568 1596
17th century 1624 1652 1680
18th century 1708 1736 1764 1792
19th century 1820 1848 1876
20th century 1904 1932 1960 1988
21st century 2016 2044 2072 2100
22nd century 2128 2156 2184

References

  1. 1 2 Robert van Gent (2005). "The Mathematics of the ISO 8601 Calendar". Utrecht University, Department of Mathematics.
  2. Robert H. van Gent (2005). "Mathematics of the ISO calendar". Department of Mathematics at Utrecht University.
This article is issued from Wikipedia - version of the 12/1/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.