List of thermal conductivities
In heat transfer, the thermal conductivity of a substance, k, is an intensive property that indicates its ability to conduct heat.
Thermal conductivity is often measured with laser flash analysis. Alternative measurements are also established.
Mixtures may have variable thermal conductivities due to composition. Note that for gases in usual conditions, heat transfer by advection (caused by convection or turbulence for instance) is the dominant mechanism compared to conduction.
This table shows thermal conductivity in SI units of watts per metre per Kelvin (W·m−1·K−1). Some measurements use the imperial unit BTUs per foot per hour per degree Fahrenheit (1 BTU h−1 ft−1 F−1 = 1.728 W·m−1·K−1).[1]
Conductivity under standard conditions
This concerns materials at atmospheric pressure and around 293K.
Material | Thermal conductivity [W·m−1·K−1] | Notes |
---|---|---|
Acrylic Glass (Plexiglas V045i) | [2]-[3] | 0.170-0.200|
Alcohols OR Oils | 0.100[4][5] | |
Aluminium | 237[6] | |
Copper, pure | 401[4][7][8] | For main article, see: Copper in heat exchangers. |
Diamond | 1,000[4] | |
Fiberglass or Foam-glass | 0.045[5] | |
Polyurethane foam | [4] | 0.020-0.021|
Expanded polystyrene | [9] | 0.033-0.046|
Manganese | 7.810[4] | lowest thermal conductivity of any pure metal |
Water | [10] | 0.591|
Marble | [4][11] | 2.070-2.940|
Snow (dry) | [4]-0.250[4] | 0.050|
Teflon | [4] | 0.25|
Material | Thermal conductivity [W·m−1·K−1] | Notes |
Non-standard conditions
Material | Thermal conductivity [W·m−1·K−1] | Temperature [K] | Electrical conductivity @ 293 K [Ω−1·m−1] |
Notes |
---|---|---|---|---|
Acrylic Glass (Plexiglas V045i) | [2]-0.19[2]-0.2[3] | 0.17296[2] | 7.143E-15[2] - 5.0E-14[2] | |
Air, macrostructure | [4][12][13]-0.025[5] 0.0262 (1 bar)[14] 0.0457 (1 bar)[14] Formula Values d=1 centimeter Standard Atmospheric Pressure 0.0209[15] 0.0235[15] 0.0260[15] 0.1 atmosphere 0.0209[16] 0.0235[16] 0.0260[16] 0.01 atmospheres 0.0209[16] 0.0235[16] 0.0259[16] 0.001 atmospheres 0.0205[16] 0.0230[16] 0.0254[16] 0.0001 atmospheres 0.0178[16] 0.0196[16] 0.0212[16] 10−5atmospheres 0.00760[16] 0.00783[16] 0.00800[16] 10−6atmospheres 0.00113[16] 0.00112[16] 0.00111[16] 10−7atmospheres 0.000119[16] 0.000117[16] 0.000115[16] |
0.024 [12][13]-293[5]-298[4] 300[14] 600[14] 233.2 266.5 299.9 233.2 266.5 299.9 233.2 266.5 299.9 233.2 266.5 299.9 233.2 266.5 299.9 233.2 266.5 299.9 233.2 266.5 299.9 233.2[15] 266.5[15] 299.9[15] |
273[17]-loAerosols7.83[17]×10−15 | hiAerosols2.95 (78.03%N2,21%O2,+0.93%Ar,+0.04%CO2) (1 atm) All formula values calculated from the Lasance formula: Lasance, Clemens J., "The Thermal Conductivity of Air at Reduced Pressures and Length Scales," Electronics Cooling, November 2002.[16] Plate separation = one centimeter. The primary values were taken from Weast at the normal pressures table in the CRC handbook on page E2.[15] |
Air, microstructure | Formula Values d=1 millimeter Standard Atmospheric Pressure 0.0209 0.0235 0.0260 0.1 atmosphere 0.0209 0.0235 0.0259 0.01 atmospheres 0.0205 0.0230 0.0254 0.001 atmospheres 0.0178 0.0196 0.0212 0.0001 atmospheres 0.00760 0.00783 0.00800 10−5 atmospheres 0.00113 0.00112 0.00111 10−6 atmospheres 0.000119 0.000117 0.000115 10−7 atmospheres 0.0000119 0.0000117 0.0000116 List[16] |
233.2 266.5 299.9 233.2 266.5 299.9 233.2 266.5 299.9 233.2 266.5 299.9 233.2 266.5 299.9 233.2 266.5 299.9 233.2 266.5 299.9 233.2 266.5 299.9 |
All values calculated from the Lasance formula: Lasance, Clemens J., "The Thermal Conductivity of Air at Reduced Pressures and Length Scales," Electronics Cooling, November 2002.[16] Plate separation = one millimeter. Note that no amount of vacuum will obstruct thermal radiation. Instead the most effective vacuum insulation that is found in the literature has numerous foils in it. Such insulation has been reported with total heat transfer as low as 0.0001 W⋅m−1⋅K−1 through some low temperature intervals that sound like they might extend with one end of them up to room temperature sometimes.[18] | |
Alcohols OR Oils | [4][5]-0.110[19]-0.21[4][5]-0.212[19] | 0.1[5]-298[4]-300[19] | 293||
Aluminum, alloy | Mannchen 1931: 92% Aluminum, 8% Magnesium Cast 72.8 100.0 126 1.xx⋅102 Annealed 76.6 1.0x⋅102 120.1 135.6 88%Aluminum, 12% Magnesium Cast 56.1 77.4 101.3 118.4 Mever-Rassler 1940: 93.0% Aluminum, 7.0% Magnesium 108.7 List[20] |
87 273 373 476 87 273 373 476 87 273 373 476 348.2 |
Mannchen, W., Z Metalik..23, 193-6, 1931 in TPRC Volume 1 pages 478, 479 and 1447. Xs have been entered where the numbers in the TPRC Data Series are smudged up too much and various electrical conductivities at various temperatures are specified in the reference. Mever-Rassler. The Mever-Rassler alloy has a density of 2.63 g cm−1. Mever-Rassler, F., Metallwirtschaft. 19, 713-21, 1940 in Volume 1 pages 478, 479 and 1464.[20] | |
Aluminum, pure | [21]-205[12]-220[22]-237[5][7][23][24]-250[4] 214.6[21] 249.3[21] TPRC Aluminum 4102 8200 12100 15700 18800 21300 22900 23800 24000 23500 22700 20200 17600 11700 7730 3180[?] 2380 1230 754 532 414 344 302 248 237 236 237 240 237 232 226 220 213 List[20] CRC Aluminum 780 1550 2320 3080 3810 4510 5150 5730 6220 6610 6900 7080 7150 7130 7020 6840 6350 5650 4000 2850 2100 1600 1250 1000 670 500 400 340 300 247 237 235 236 237 240 240 237 232 226 220 213 List[15] |
204.3 [5][21]-298[4][7][24] 366[21] 478[21] 1 2 3 4 5 6 7 8 9 10 11 13 15 20 25 30 40 50 60 70 80 90 100 150 200 273.2 300 400 500 600 700 800 900 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 25 30 35 40 45 50 60 70 80 90 100 150 200 250 273 300 350 400 500 600 700 800 900 |
29337,450,000[24] - 37,740,000[25] | The TPRC list is the estimate of the Thermophysical Properties Research Center which was sponsored by the government in the 1960s. Performing Organization: Purdue University. Controlling Organization: Defense Logistics Agency. Documented summaries from numerous scientific journals and etc. and critical estimates. 17000 pages in 13 volumes. TPRC pure aluminum is aluminum that is 99.9999% pure aluminum and residual electrical resistivity ρ0=0.000593 μΩ cm. By comparison CRC pure aluminum is aluminum that is 99.996+% pure aluminum and ρ at 4.2 Kelvins is used approximately as ρ0. In any case the CRC kind of pure aluminum has its CRC kind of ρ0=0.00315 μΩ cm. CRC handbook, 48th Edition, E-10.[15] This material is superconductive (electrical) at temperatures below 1.183 Kelvins. Weast page E-78[15] |
Aluminum nitride | [23]-175[26]-190[26] | 170293[26] | 1×10 −11[26] | |
Aluminum oxide | Pure [27]-30[5]-35[27]-39[23]-40[28] NBS, Ordinary 27[29] 16[29] 10.5[29] 8.0[29] 6.6[29] 5.9[29] 5.6[29] 5.6[29] 6.0[29] 7.2[29] Slip Cast: 11.1[30] 10.0[30] 8.37[30] 7.95[30] 6.90[30] 5.86[30] 5.65[30] 5.65[30] 5.65[30] Sapphire 15.5[30] 13.9[30] 12.4[30] 10.6[30] 8.71[30] 8.04[30] 7.68[30] 7.59[30] 7.61[30] 7.86[30] 8.13[30] 8.49[30] |
26 293[5][27][28] 400[29] 600[29] 800[29] 1000[29] 1200[29] 1400[29] 1600[29] 1800[29] 2000[29] 2200[29] 613.2[30] 688.2[30] 703.2[30] 873.2[30] 943.2[30] 1033.2[30] 1093[30] 1203.2[30] 1258.2[30] 591.5[30] 651.2[30] 690.2[30] 775.2[30] 957.2[30] 1073.2[30] 1173.2[30] 1257.2[30] 1313.2[30] 1384.2[30] 14X9.2[30] 1508.2[30] |
1×10 −12-[27][28] | The NBS recommended ordinary values are for 99.5% pure polycrystalline alumina at 98% density.[29] Slip Cast Values are taken from Kingery, W.D., J. Am Ceram. Soc., 37, 88-90, 1954, TPRC pages 423 and 1553.[30] Sapphire values are taken from Kingery, W.D. and Norton, F.H., USAEC Rept. NYO-6447, 1-14, 1955, TPRC pages 94, 96 & 1160.[30] Errata: The numbered references in the NSRDS-NBS-8 pdf are found near the end of the TPRC Data Book Volume 2 and not somewhere in Volume 3 like it says.[30] |
Aluminum oxide, porous | 22% Porosity 2.3[29] | Constant 1000-1773[29] | This is number 54 on pages 73 and 76. Shakhtin, D.M. and Vishnevskii, I.I., 1957, interval 893-1773 Kelvins.[29] | |
Ammonia, saturated | 0.507[19] | 300[19] | ||
Argon | [4]-0.01772[7]-0.0179[7][31] | 0.016[4][7]-300[7][31] | 298||
Beryllium oxide | [23]-260[32]-300[32] TPRC Recommended: 424[30] 302[30] 272[30] 196[30] 146[30] 111[30] 87[30] 70[30] 57[30] 47[30] 39[30] 33[30] 28.3[30] 24.5[30] 21.5[30] 19.5[30] 18.0[30] 16.7[30] 15.6[30] 15.0[30] |
218 293[32] 200[30] 273.2[30] 300[30] 400[30] 500[30] 600[30] 700[30] 800[30] 900[30] 1000[30] 1100[30] 1200[30] 1300[30] 1400[30] 1500[30] 1600[30] 1700[30] 1800[30] 1900[30] 2000[30] |
1×10 −12[32] | Recommended values are found on page 137 of volume 2, TPRC Data Series, 1971[30] |
Bismuth | 7.97[7] | 300[7] | ||
Brass Cu63% | 125[33] | 296[33] | 15,150,000[33] - 16,130,000[33] | (Cu63%, Zn37%) |
Brass Cu70% | [12][34] - 121[34] | 109[12]-296[34] | 29312,820,000[34] - 16,130,000[34] | (Cu70%, Zn30%) |
Brick | [12]-0.6[12]-0.69[4]-1.31[4] British 2016: Inner leaf (1700 kg/m3): 0.62[35] Outer leaf (1700 kg/m3): 0.84[35] 1920s Values: Brick #1: 0.674[30] Brick #2: 0.732[30] |
0.15 [12]-298[4] 373.2[30] 373.2[30] |
293Brick #1: 76.32% SiO2, 21.96%Al2O3, 1.88%Fe2O3 traces of CaO and MgO, commercial brick, density 1.795 g ⋅ cm−3. Brick #2: 76.52%SiO2, 13.67%Al2O3, 6.77%Fe2O3, 1.77%CaO, 0.42%MgO, 0.27%MnO, no specified density. Judging from the descriptions the TPRC has put the wrong labels on their bricks, and if that is the case then Brick #1 is "Common Brick" and Brick #2 is "Red Brick." Tadokoro, Y., Science Repts. Tohoku Imp. Univ., 10, 339-410, 1921, TPRC pages 493 & 1169.[30] | |
Bronze | [22] 42[36]-50[21][36] |
26[21]-296[36] | 293 5,882,000[36] - 7,143,000[36] |
Sn25%[22] (Cu89%, Sn11%)[36] |
Calcium silicate | 0.063[37] | 373[37] | ||
Carbon dioxide | [4]-0.01465[38]-0.0168[31](sat. liquid 0.087[39]) | 0.0146[4]-273[38]-300[31](293[39]) | 298||
Carbon nanotubes, bulk | [40] - 35 (single wall, disordered mats)[40] - 200(single wall, aligned mats)[40] | 2.5 (multiwall)[40] | 300"bulk" refers to a group of nanotubes either arranged or disordered, for a single nanotube, see "carbon nanotube, single".[40] | |
Carbon nanotube, single | [41][42]-3500 (single wall)[43] (SWcalc.6,600[41][44]-37,000[41][44]) |
3180 (multiwall) [41][42]-300[43] (300[41][44]-100[41][44]) |
320[45] - (Ballistic)108[45]) | (Lateral)10−16values only for one single SWNT(length:2.6 μm, diameter:1.7 nm) and CNT. "Single", as opposed to "bulk" quantity (see "carbon nanotubes, bulk" ) of many nanotubes, which should not be confused with the denomination of nanotubes themselves which can be singlewall(SWNT) or multiwall(CNT)[40] |
Cerium dioxide | 1.70[6] 1.54[6] 1.00[6] 0.938[6] 0.851[6] 0.765[6] |
1292.1[6] 1322.1[6] 1555.9[6] 1628.2[6] 1969.2[6] 2005.9[6] |
Pears, C.D., Project director, Southern Res. Inst. Tech. Documentary Rept. ASD TDR-62-765, 20-402, 1963. TPRC Vol 2, pages 145, 146 and 1162[30] | |
Concrete | [12] - 1.28[5] - 1.65 [46] - 2.5 [46] | 0.8293[5] | ~61-67%CaO | |
Copper, commercial | Wright, W.H., M.S. Thesis: Sample 1 423 385 358 311 346 347 350 360 Sample 2 353 360 366 363 365 Lists[20] Taga, M., periodical First run: 378 Second run: 374 Third run: 378 Fourth run: 382 List[20] |
80.06 95.34 115.62 135.53 159.46 181.56 198.35 217.30 198.53 220.90 240.88 257.38 275.40 363.2 363.2 363.2 363.2 |
Wright, W.H., M.S. Thesis, Georgia Institute of Technology, 1-225, 1960. TPRC Data Series Volume 1, pages 75, 80 and 1465.[20] Taga, commercial grade, 99.82% purity, density 8.3 g⋅cm−3. Taga, M., [Bull?], Japan Soc. Mech. Engrs., 3 (11) 346-52, 1960. TPRC Data Series Vol 1, pages 74, 79 and 1459.[20] | |
Copper, pure | [12]-386[21][22]-390[5]-401[4][7][8] 368.7[21] 353.1[21] 1970s values: TPRC 2870 13800 19600 10500 4300 2050 1220 850 670 570 514 483 413 401 398 392 388 383 377 371 364 357 350 342 334 List[20] The Soviet Union 403[47] |
385 [4][5][7][8][12][21] 573[21] 873[21] 1 5 10 20 30 40 50 60 70 80 90 100 200 273 300 400 500 600 700 800 900 1000 1100 1200 1300 273.15 |
29359,170,000[8] - 59,590,000[25] | International Annealed Copper Standard (IACS) pure =1.7×10−8Ω•m =58.82×106Ω−1•m−1 For main article, see: Copper in heat exchangers. The TPRC recommended values are for well annealed 99.999% pure copper with residual electrical resistivity of ρ0=0.000851 μΩ⋅cm. TPRC Data Series volume 1 page 81.[20] The Soviet report did not specify anything about the purity of the material. |
Cork | [12] - 0.07[5] 1940s values: Density=0.195 g cm−3 0.0381[30] 0.0446[30] Density=0.104 g cm−3 0.0320[30] 0.0400[30] |
0.04 293[5] --- 222.0[30] 305.5[30] 222.0[30] 305.5[30] |
1940s values are for oven dried cork at specified densities: Rowley, F.B., Jordan, R.C. and Lander, R.M., Refrigeration Engineering, 53, 35-9. 1947, TPRC pages 1064, 1067 & 1161.[30] | |
Cotton or Plastic Insulation-foamed | 0.03[4][5] | 293[5] | ||
Diamond, impure | 1,000[12][48] | [48] - 293[12] | 2731×10 −16~[49] | Type I (98.1% of Gem Diamonds) (C+0.1%N) |
Diamond, natural | 2,200[50] | 293[50] | 1×10 −16~[49] | Type IIa (99%12C and 1%13C) |
Diamond, isotopically enriched | 3,320[50]-41,000[41][51](99.999% 12C calc.200,000[51]) | 293[50]-104[41][51](~80[51]) | [49] - (Ballistic)108[49] | (Lateral)10−16Type IIa isotopically enriched (>99.9%12C) |
Epoxy, thermally conductive | [52] - 1.038 - 1.384[53] - 4.8[54] | 0.682|||
Expanded polystyrene - EPS | [4]-0.033[4][12][48]((PS Only)0.1[55]-0.13[55]) | 0.03[48]-298[4][48](296[55]) | 981×10 −14[55] | (PS+Air+CO2+CnH2n+x) |
Extruded polystyrene - XPS | 0.029 - 0.39 | 98-298 | ||
Fiberglass or Foam-glass | 0.045[5] | 293[5] | ||
Gallium arsenide | 56[48] | 300[48] | ||
Glass | [12]-0.93[5](SiO2pure1[23]-SiO296%1.2[56]-1.4[56]) Corning Code 7740* 0.58[57] 0.90[57] 1.11[57] 1.25[57] 1.36[57] 1.50[57] 1.62[57] 1.89[57] |
0.8 293[5][12][56] 100[57] 200[57] 300[57] 400[57] 500[57] 600[57] 700[57] 800[57] |
[58][59]-10−12[56]-10−10[58][59] | 10−14 <1% Iron oxides *Corning Code 7740 is pyrex glass as known to the National Bureau of Standards in 1966 and at that time the composition was about 80.6% SiO2, 13% B2O3, 4.3% Na2O and 2.1% Al2O3.[57] Similar glasses have a coefficient of linear expansion of about 3 parts per million per Kelvin at 20°Celsius.[60] Errata: The numbered references in the NSRDS-NBS-8 pdf are found near the end of the TPRC Data Book Volume 2 and not somewhere in Volume 3 like it says.[30] |
Glycerol | [19]-0.29[5] | 0.285[19]-293[5] | 300||
Gold, pure | [12]-315[21]-318[7][22][61] 1970s values: 444 885 2820 1500 345 327 318 315 312 309 304 298 292 285 List[20] |
314 [21]-298[7][61] 1 2 10 20 100 200 273.2 300 400 500 600 700 800 900 |
29345,170,000[25] - 45,450,000[61] | 1970s values are found on page 137, TPRC Data Series volume 1 (1970).[20] |
Granite | [11] - 3.98[11] Nevada Granite: 1.78[30] 1.95[30] 1.86[30] 1.74[30] 1.80[30] Scottish Granite: 3.39[30] 3.39[30] |
1.73368[30] 523[30] 600[30] 643[30] 733[30] 306.9[30] 320.2[30] |
(72%SiO2+14%Al2O3+4%K2O etc.) Scottish Granite: Nancarrow, H. A., Proc. Phys. Soc. (London). 45, 447-61, 1933, TPRC pages 818 and 1172.[30] Nevada Granite: Stephens, D. R., USAEC UCRL-7605, 1-19, 1963, TPRC pages 818 and 1172.[30] A 1960 report on the Nevada granite (Izett, USGS) is posted on the internet but the very small numbers there are hard to understand.[62] | |
Graphene | [63] - (5300±480)[63] | (4840±440)293[63] | 100,000,000[64] | |
Graphite, natural | [65] | 25-470293[65] | [65] | 5,000,000-30,000,000|
Helium II | [66] in practice, phonon scattering at solid-liquid interface is main barrier to heat transfer. | ≳1000002.2 | liquid Helium in its superfluid state below 2.2 K | |
House | American 2016 Wood Product Blow-in, Attic Insulation 0.0440 − 0.0448[67] FIBERGLASTM Blow-in, Attic Insulation 0.0474 − 0.0531[68] PINK FIBERGLASTM Flexible Insulation 0.0336 − 0.0459[69] British CONCRETE: General 1.28[35] (2300 kg/m3) 1.63[35] (2100 kg/m3 typical floor) 1.40[35] (2000 kg/m3 typical floor) 1.13[35] (medium 1400 kg/m3) 0.51[35] (lightweight 1200 kg/m3) 0.38[35] (lightweight 600 kg/m3) 0.19[35] (aerated 500 kg/m3) 0.16[35] PLASTER: (1300 kg/m3) 0.50[35] (600 kg/m3) 0.16[35] TIMBER: Timber (650 kg/m3) 0.14[35] Timber flooring (650 kg/m3) 0.14[35] Timber rafters 0.13[35] Timber floor joists 0.13[35] MISC.: Calcium silicate board (600 kg/m3) 0.17[35] Expanded polystyrene 0.030 −0.038[35] Plywood (950 kg/m3) 0.16[35] Rock mineral wool 0.034 −0.042[35] 1960s Values Dry Zero − Kapok between burlap or paper density 0.016 g cm−3, TC=0.035 W⋅m−1K−1[70] Hair Felt − Felted cattle hair density 0.176 g cm−3, TC=0.037 W⋅m−1K−1[70] density 0.208 g cm−3, TC=0.037 W⋅m−1K−1[70] Balsam Wool − Chemically treated wood fibre density 0.035 g cm−3, TC=0.039 W⋅m−1K−1[70] Hairinsul − 50% hair 50% jute density 0.098 g cm−3, TC=0.037 W⋅m−1K−1[70] Rock Wool − Fibrous material made from rock density 0.096 g cm−3, TC=0.037 W⋅m−1K−1[70] density 0.160 g cm−3, TC=0.039 W⋅m−1K−1[70] density 0.224 g cm−3, TC=0.040 W⋅m−1K−1[70] Glass Wool − Pyrex glass curled density 0.064 g cm−3, TC=0.042 W⋅m−1K−1[70] density 0.160 g cm−3, TC=0.042 W⋅m−1K−1[70] Corkboard − No added binder density 0.086 g cm−3, TC=0.036 W⋅m−1K−1[70] density 0.112 g cm−3, TC=0.039 W⋅m−1K−1[70] density 0.170 g cm−3, TC=0.043 W⋅m−1K−1[70] density 0.224 g cm−3, TC=0.049 W⋅m−1K−1[70] Corkboard − with asphaltic binder density 0.232 g cm−3, TC=0.046 W⋅m−1K−1[70] Cornstalk Pith Board: 0.035 − 0.043[70] Cypress density 0.465 g cm−3, TC=0.097 W⋅m−1K−1[70] White pine density 0.513 g cm−3, TC=0.112 W⋅m−1K−1[70] Mahogany density 0.545 g cm−3, TC=0.123 W⋅m−1K−1[70] Virginia pine density 0.545 g cm−3, TC=0.141 W⋅m−1K−1[70] Oak density 0.609 g cm−3, TC=0.147 W⋅m−1K−1[70] Maple density 0.705 g cm−3, TC=0.159 W⋅m−1K−1[70] |
American 2016: Flexible Insulation from Owens Corning includes faced and unfaced rolls of glass wool and with foil.[69] 1960s values: All thermal conductivities from Cypress to Maple are given across the grain.[70] | ||
Hydrogen | [71] | 0.1819290 | Hydrogen gas at room temperature. | |
Ice | [12]-2.1[5]-2.2[48]-2.22[72] | 1.6[5][12] - 273[48][72] | 293||
Indium phosphide | 80[48] | 300[48] | ||
Insulating Firebrick | Sheffield Pottery, 2016: NC-23 0.19[73] 0.20[73] 0.23[73] 0.26[73] NC-26 0.25[73] 0.26[73] 0.27[73] 0.30[73] NC-28 0.29[73] 0.32[73] 0.33[73] 0.36[73] 1940s Blast Furnace: 1.58[30] 1.55[30] 1.53[30] |
533[73] 811[73] 1089[73] 1366[73] 533[73] 811[73] 1089[73] 1366[73] 533[73] 811[73] 1089[73] 1366[73] --- 636.2[30] 843.2[30] 1036.2[30] |
Sheffield Pottery: Standard ASTM 155 Grades, 05/10/2006: NC-23, Cold Crushing Strength=145 lbs/inch2, density=36 lbs/ft3 NC-26, Cold Crushing Strength=220 lbs/inch2, density=46 lbs/ft3 NC-28, Cold Crushing Strength=250 lbs/inch2, density=55 lbs/ft3 [73] --- 1940s Blast Furnace: Kolechkova, A. F. and Goncharov, V. V., Ogneupory, 14, 445-53, 1949, TPRC pages 488, 493 & 1161.[30] | |
Iron, pure | [22]-72.7[21]-79.5[12]-80[4]-80.2[48]-80.4[7][74] 55.4[21] 34.6[21] TPRC 149 224 297 371 442 513 580 645 705 997 814 555 372 265 204 168 146 132 94 83.5 80.3 69.4 61.3 54.7 48.7 43.3 38.0 32.6 29.7 29.9 27.9 28.2 29.9 30.9 31.8 List[20] The Soviet Union 86.5[47] |
71.8 [12][21]-298[4]-300[7][48][74] 573[21] 1273[21] 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 200 273.2 300 400 500 600 700 800 900 1000 1100 1183 1183 1200 1300 1400 1500 273.15 |
2939,901,000[74] - 10,410,000[25] | The TPRC recommended values are for well annealed 99.998% pure iron with residual electrical resistivity of ρ0=0.0327 μΩ⋅cm. TPRC Data Series volume 1 page 169.[20] |
Iron, cast | 55[4][22] | 298[4] | (Fe+(2-4)%C+(1-3)%Si) | |
Lead, pure | [12][21]-35.0[4][22]-35.3[7][75] 29.8[21] TPRC 2770 4240 3400 2240 1380 820 490 320 230 178 146 123 107 94 84 77 66 59 50.7 47.7 45.1 43.5 39.6 36.6 35.5 35.2 33.8 32.5 31.2 List[20] The Soviet Union 35.6[47] |
34.7 [12][21]-298[4]-300[7][75] 573[21] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 25 30 40 50 100 200 273.2 300 400 500 600 273.15 |
2934,808,000[25] - 4,854,000[75] | The TPRC List is the TPRC estimate for well annealed Lead of 99.99+% purity and residual electrical resistivity ρ0=0.000880 μΩ cm. TPRC Data Series Volume 1, page 191.[20] This material is superconductive (electrical) at temperatures below 7.193 Kelvins. Weast page E-87.[15] |
Limestone | [11] - 1.33[11] Indiana Limestone 1.19[76] 1.21[76] 1.19[76] 1.11[76] 1.12[76] 1.07[76] 1.03[76] 0.62[76] 0.57[76] 0.54[76] Queenstone Grey 1.43[30] 1.41[30] 1.40[30] 1.33[30] |
1.26 ---- 472[76] 553[76] 683[76] 813[76] 952[76] 1013[76] 1075[76] 1181[76] 1253[76] 1324[76] 395.9[30] 450.4[30] 527.6[30] 605.4[30] |
Mostly CaCO3 and the "Indiana Limestone" is 98.4% CaCO3, 1% quartz and 0.6% hematite.[76] By comparison Queenstone Grey is a mixture of dolomite and calcite containing 22% MgCO2. Density=2.675 g cm−3. Niven, C.D., Can J. Research, A18, 132-7, 1940, TPRC pages 821 and 1170.[30] | |
Manganese | [4] | 7.81lowest thermal conductivity of any pure metal | ||
Marble | [11]-2.08[4]-2.94[4][11] | 2.07298[4] | ||
Methane | [4]-0.03281[77] | 0.030[4]-273[77] | 298||
Mineral Insulation or Wool(Felt/Glass/Rock) | 0.04[4][5][12] | [5]-298[4] | 293||
Nickel | [7]-91[4] | 90.9298[4][7] | ||
Nitrogen, pure | [12]-0.024[4]-0.02583[7]-0.026[31][48] | 0.0234[12]-298[4]-300[7][31][48] | 293(N2) (1 atm) | |
Oxygen, pure (gas) | [12]-0.024[4]-0.0263[31]-0.02658[7] | 0.0238[12]-298[4]-300[7][31] | 293(O2) (1 atm) | |
Paper | 0.05[4] | 298[4] | ||
Perlite, (1 atm) | 0.031[4] | 298[4] | ||
Perlite in partial vacuum | 0.00137[4] | 298[4] | ||
Pine | 0.0886[30] 0.0913[30] 0.0939[30] 0.0966[30] 0.0994[30] 0.102[30] |
222.0[30] 238.7[30] 255.4[30] 272.2[30] 288.9[30] 305.5[30] |
Density=0.386 g cm−3. Rowley, F. B., Jordan, R. C. and Lander, R. M., Refrigeration Engineering, 53, 35-9, 1947, TPRC pages 1083 and 1161.[30] | |
Plastic, fiber-reinforced | [78] - 0.7[78] - 1.06[5] | 0.23[5] - 296[78] | 293[78] - 100[78] | 10−1510-40%GF or CF |
Polyethylene High Density | [4] - 0.51[4] | 0.42298[4] | ||
Polymer, High-Density | [78] - 0.52[78] | 0.33296[78] | [78] - 102[78] | 10−16|
Polymer, Low-density | [78] - 0.16[5] - 0.25[5] - 0.33[78] | 0.04[5] - 296[78] | 293[78] - 100[78] | 10−17|
Polyurethane foam | [4] - 0.021[4] | 0.02298[4] | ||
Quartz−Single Crystal | [48] to c axis, 06.8[48] to c axis Rutgers University 11.1[79] to c axis, 5.88[79] to c axis 9.34[79] to c axis, 5.19[79] to c axis 8.68[79] to c axis, 4.50[79] to c axis NBS 6.00[80] to c axis, 3.90[80] to c axis 5.00[80] to c axis, 3.41[80] to c axis 4.47[80] to c axis, 3.12[80] to c axis 4.19[80] to c axis, 3.04[80] to c axis |
12 300[48] ------ 311[79] 366[79] 422[79] ------ 500[80] 600[80] 700[80] 800[80] |
The noted authorities have reported some values in three digits as cited here in metric translation but they have not demonstrated three digit measurement.[81] Errata: The numbered references in the NSRDS-NBS-8 pdf are found near the end of the TPRC Data Book Volume 2 and not somewhere in Volume 3 like it says.[30] | |
Quartz-Fused or Vitreous Silica or Fused Silica | [82]-3[5] 1.4[48] England 0.84[83] 1.05[83] 1.20[83] 1.32[83] 1.41[83] 1.48[83] America 0.52[80] 1.13[80] 1.23[80] 1.40[80] 1.42[80] 1.50[80] 1.53[80] 1.59[80] 1.73[80] 1.92[80] 2.17[80] 2.48[80] 2.87[80] 3.34[80] 4.00[80] 4.80[80] 6.18[80] |
1.46 [5][82] 323[48] 123[83] 173[83] 223[83] 273[83] 323[83] 373[83] 100[80] 200[80] 223[80] 293[80] 323[80] 373[80] 400[80] 500[80] 600[80] 700[80] 800[80] 900[80] 1000[80] 1100[80] 1200[80] 1300[80] 1400[80] |
2931.333E-18[58] - 10−16[82] | |
Quartz-Slip Cast | First Run 0.34[84] 0.39[84] 0.45[84] 0.51[84] 0.62[84] Second Run 0.63[84] 0.66[84] 0.69[84] |
500[84] 700[84] 900[84] 1100[84] 1300[84] 900[84] 1000[84] 1100[84] |
This material which must have started out like unfired pottery was slip cast from fused silica. Then it was dried four days at 333 K before being tested. It was 9 inches in diameter and 1 inch thick, density 1.78 ⋅ cm−3. The first run went to 1317K and then on the second run the same insulator proved to be more conductive. 1959.[84] | |
Quartz-Powdered | 0.178[85] 0.184[85] 0.209[85] 0.230[85] 0.259[85] |
373.2[85] 483.2[85] 588.2[85] 673.2[85] 723.2[85] |
In the particular case the powdered quartz has been roughly competitive with insulating firebrick. The noted grain sizes ranged from 0.3 to 1 mm diameter and the density was 0.54 grams ⋅ cm−3. Kozak, M.I. Zhur. Tekh. Fiz., 22 (1), 73-6, 1952. Reference No. 326, page 1166.[85][30] | |
Redwood Bark | Whole: Density=0.0641 g cm−3: 0.0286[30] 0.0307[30] 0.0330[30] 0.0356[30] 0.0379[30] 0.0407[30] Shredded: Density=0.0625 g cm−3: 0.0107[30] |
222.2[30] 239.2[30] 255.5[30] 272.1[30] 288.8[30] 305.3[30] 318.7[30] |
Whole: Rowley, F. B., Jordan, R. C. and Lander, R. M., Refrig. Eng., 50, 541-4, 1945, TPRC pages 1084 & 1172.[30] Shredded: Wilkes, G. B., Refrig. Eng., 52, 37-42, 1946, TPRC pages 1084 & 1162.[30] | |
Rice hulls (ash) | 0.062[86] | |||
Rice hulls (whole) | 0.0359[86] | |||
Rubber (92%) | 0.16[48] | 303[48] | 1×10 −13~[58] | |
Sandstone | [11] - 2.90[11] 2.1[87] - 3.9[87] |
1.83 ~95-71%SiO2 ~98-48%SiO2, ~16-30% Porosity | ||
Silica Aerogel | [48](carbon black9%~0.0042[88])-0.008[88]-0.017[88]-0.02[4]-0.03[48] | 0.003[48] - 298[4][48] | 98Foamed Glass | |
Silver, pure | [12]-407[21]-418[22] 427[23]-429[4][7][48][89]-430[7] 1970s values: TPRC 3940 7830 17200 16800 5100 1930 1050 700 550 497 471 460 450 432 430 428 427 420 413 405 397 389 382 List[20] The Soviet Union 429[47] |
406 [12][21] 298[4][7][89]-300[7][48] 1 2 5 10 20 30 40 50 60 70 80 90 100 150 200 273.2 300 400 500 600 700 800 900 273.15 |
29361,350,000[89] - 63,010,000[25] | Highest electrical conductivity of any metal TPRC recommended values are for well annealed 99.999% pure silver with residual electrical resistivity of ρ0=0.000620 μΩ⋅cm. TPRC Data Series volume 1 page 348 (1970).[20] |
Silver, sterling | [90] | 361|||
Snow, dry | [4]-0.11[12]-0.25[4] | 0.05273[4] | ||
Sodium chloride | [91] | 35.1 - 6.5 - 4.8580 - 289 - 400[91] | ||
Soil, dry w/ organic matter | [5][92]-1.15[92]-2[5] | 0.15293[5] | composition may vary | |
Soil, saturated | [5]-4[5] | 0.6293[5] | composition may vary | |
Soils, 1950s Values | Mineral; density 2.65 g cm−3: 2.93[93] Organic; density 1.3 g cm−3: 0.251[93] Soil, mineral, dry; density 1.50 g cm−3: 0.209[93] Soil, mineral, saturated; density 1.93 g cm−3: 2.09[93] Soil, organic, dry; density 0.13 g cm−3: 0.0335[93] Soil, organic, sat.; density 1.03 g cm−3: 0.502[93] |
293.2[93] | The TPRC Data Book has been quoting de Vries with values of 0.0251 and 0.0109 W⋅cm−3⋅Kelvin−1 for the thermal conductivities of organic and dry mineral soils respectively but the original article is free at the website of their cited journal. Errors: TPRC Volume 2 pages 847 and 1159.[30] Journal archives.[93] | |
Solder, Sn/63% Pb/37% | [94] | 50|||
Lead free solder, Sn/95.6% Ag/3.5% Cu/0.9%, Sn/95.5% Ag/3.8% Cu/0.7% (SAC) | [94] | ~60|||
Steel, carbon | [21][22]-43[4] 50.2[12]-54[4][21][22] | 36[12][21]-298[4] | 293(Fe+(1.5-0.5)%C) | |
Steel, stainless | [22][95]-16.7[96]-18[97]-24[97] | 16.3296[95][96][97] | 1,176,000[96] - 1,786,000[97] | (Fe, Cr12.5-25%, Ni0-20%, Mo0-3%, Ti0-trace) |
Styrofoam-Expanded Polystyrene | Dow Chemical 0.033-0.036[98] K. T. Yucel et al. 0.036-0.046[9] |
|||
Thermal grease | 0.4 - 3.0 | |||
Thermal tape | 0.60[99] | |||
Thorium dioxide | 3.68[30] 3.12[30] 2.84[30] 2.66[30] 2.54[30] |
1000[30] 1200[30] 1400[30] 1600[30] 1800[30] |
Recommended values, TPRC, Polycrystaline, 99.5% pure, 98% dense, page 198[30] | |
Tin | TPRC 20400to the c axis, 14200 to the c axis, 18300 P 36000to the c axis, 25000 to the c axis, 32300 P 33100to the c axis, 23000 to the c axis, 29700 P 20200to the c axis, 14000 to the c axis, 18100 P 13000to the c axis, 9000 to the c axis, (11700) P 8500to the c axis, 5900 to the c axis, (7600) P 5800to the c axis, 4000 to the c axis, (5200) P 4000to the c axis, 2800 to the c axis, (3600) P 2900to the c axis, 2010 to the c axis, (2600) P 2150to the c axis, 1490 to the c axis, (1930) P 1650to the c axis, 1140 to the c axis, (1480) P 1290to the c axis, 900 to the c axis, (1160) P 1040to the c axis, 720 to the c axis, (930) P 850to the c axis, 590 to the c axis, (760) P 700to the c axis, 490 to the c axis, (630) P 590to the c axis, 410 to the c axis, (530) P 450to the c axis, 310 to the c axis, (400) P 360to the c axis, 250 to the c axis, (320) P 250to the c axis, 172 to the c axis, (222) P 200to the c axis, 136* to the c axis, (176) P 167to the c axis, 116 to the c axis, (150) P (150)to the c axis, (104) to the c axis, (133) P (137)to the c axis, (95) to the c axis, (123) P (128)to the c axis, (89) to the c axis, (115) P (107)to the c axis, (74) to the c axis, (96) P (98.0)to the c axis, (68.0) to the c axis, (88.0) P (95.0)to the c axis, (66.0) to the c axis, (85.0) P (86.7)to the c axis, (60.2) to the c axis, (77.9) P (81.6)to the c axis, (56.7) to the c axis, (73.3) P (75.9)to the c axis, (52.7) to the c axis, 68.2 P (74.2)to the c axis, (51.5) to the c axis, 66.6 P 69.3to the c axis, 48.1 to the c axis, 62.2 P 66.4to the c axis, 46.1 to the c axis, 59.6 P List[20] The Soviet Union 68.2[47] |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 25 30 35 40 45 50 70 90 100 150 200 273.2 300 400 500 273.15 |
TPRC Tin is well annealed 99.999+% pure white tin with residual electrical resistivity ρ0=0.000120, 0.0001272 & 0.000133 μΩ cm respectively for the single crystal along directions perpendicular and parallel to the c axis and for polycrystalline tin P. The recommended values are thought to be accurate to within 3% near room temperature and 3 to [unintelligible] at other temperatures. Values in parenthesis are extrapolated, interpolated, or estimated. *It happens that the online record has the thermal conductivity at 30 Kelvins and to the c axis posted at 1.36 W⋅cm−1 K−1 and 78.0 Btu hr−1 ft−1 F−1 which is incorrect. Also the copy is blurred up enough to give you the impression that maybe what it really means is 1.36 W−1 cm−1 K−1 and 78.6 Btu hr−1 ft−1 F−1 and a type-head that got overdue for its cleaning since the secretary had a tall heap of papers on her desk and if that is the case then the multilingual expression is perfectly consistent. TPRC Data Series Volume 1, page 408.[20] This material is superconductive (electrical) at temperatures below 3.722 Kelvins. Weast page E-75.[15] | |
Titanium, pure | [22]-19.0[21]-21.9[7][100]-22.5[21] | 15.6[21]-300[7][100] | 2931,852,000[100] - 2,381,000[25] | |
Titanium Alloy | 5.8[101] | 296[101] | 595,200[101] | (Ti+6%Al+4%V) |
Tungsten, Pure | 173[102] | 293[102] | 18,940,000[102] | |
Water | [103]-0.596[103]-0.6[5][12]-0.609[19] TPRC 0.5225* 0.5551* 0.5818 0.5918 0.6084 0.6233 0.6367 0.6485 0.6587 0.6673 0.6797 0.6864 0.6727 0.6348 0.5708 List[10] The Soviet Union 0.599[47] |
0.563 [103]-293[5][12][103]-300[19] 250 270 280 290 300 310 320 330 340 350 370 400 450 500 550 293.15 |
273Pure10−6[49]-Sweet10−3±1[49]-Sea1[103] | 5× <4[103]%(NaCl+MgCl2+CaCl2) *The TPRC Estimates for water at 250K and 270K are for supercooled liquid. Of course the values for 400K and above are for water under steam pressure.[10] |
Wallboard (1929) | 0.0640[30] 0.0581[30] 0.0594[30] 0.0633[30] |
322.8[30] | Stiles, H., Chem. Met. Eng., 36, 625-6, 1929, TPRC pages 1131 and 1172.[30] | |
Water vapor | [4]-0.02479 (101.3 kPa)[104] 0.0471 (1 bar)[14] |
0.016 [104]-398[4] 600[14] |
293||
Wood, moist | [105]-0.16[48]-0.21[105]-0.4[5] The Royal Society: Fir, 15%, ⊥ to the grain: 0.117[30] Mahogany, 15%, ⊥ to the grain: 0.167[30] ⊥ to the grain: 0.155[30] Oak, 14%, ⊥ to the grain: 0.117[30] Spruce: ⊥ to the grain: 3.40%: 0.122[30] ⊥ to the grain: 5.80%: 0.126[30] ⊥ to the grain: 7.70%: 0.129[30] ⊥ to the grain: 9.95%: 0.133[30] ⊥ to the grain: 17.0%: 0.142[30] to the grain: 16%: 0.222[30] |
+>=12% water: 0.09091 [48]-293[5] 293.2[30] 293.2[30] 293.2[30] 293.2[30] 373.2[30] 373.2[30] 373.2[30] 373.2[30] 373.2[30] 293.2[30] |
298 Species-Variable[105] The Royal Society: Griffiths, E. and Kaye, G. W. C., Proc. Roy. Soc. (London), A104, 71-98, 1923, TPRC pages 1073, 1080, 1082, 1086 and 1162.[30] Re: Reference No 7: Maple in particular has been measured at more than 0.4⋅W m−1K−1 parallel to the grain. Density 0.72. TPRC Volume 2, page 1081 (1920)[30] | |
Wood, oven-dry | [12]-0.055[4]-0.07692[105]-0.12[12]-0.17[4][105] | 0.04[12]-298[4] | 293Balsa[4]-Cedar[105]-Hickory[105]/Oak[4] | |
Wool, Angora Wool | 0.0464[30] | 293.2[30] | Bettini, T. M., Ric. Sci. 20 (4), 464-6, 1950, TPRC pages 1092 and 1172[30] | |
Wool felt | 0.0623[30] 0.0732[30] |
313.2[30] 343.2[30] |
Taylor, T. S., Mech. Eng., 42, 8-10, 1920, TPRC pages 1133 and 1161.[30] | |
Zinc, Pure | [49] | 116[49] | 293[49] | 16,950,000|
Zinc oxide | 21[23] | |||
Zirconium dioxide | Slip Cast, first run (1950) 2.03[30] 1.98[30] 1.96[30] 1.91[30] 1.91[30] 1.90[30] Second Run (1950) 1.81[30] 1.80[30] 1.92[30] 1.90[30] 1.95[30] 1.92[30] 1.97[30] 1.98[30] 2.04[30] 2.29[30] CaO stabilized (1964) 1.54[30] 1.64[30] 1.64[30] 1.76[30] 1.62[30] 1.79[30] 1.80[30] 2.46[30] 2.33[30] 2.80[30] 2.56[30] 2.70[30] |
766.2[30] 899.2[30] 1006.2[30] 1090.2[30] 1171.2[30] 1233.2[30] 386.2[30] 470.2[30] 553.2[30] 632.2[30] 734.2[30] 839.2[30] 961.2[30] 1076.2[30] 1163.2[30] 1203.2[30] 1343.2[30] 1513.2[30] 1593.2[30] 1663.2[30] 1743.2[30] 2003.2[30] 2103.2[30] 2323.2[30] 2413.2[30] 2413.2[30] 2493.2[30] 2523.2[30] |
First Run: Density=5.35 g cm−3. Norton, F. H., Kingery, W. D., Fellows, D. M., Adams, M., McQuarrie, M. C. and Coble, R. L. USAEC Rept. NYO-596, 1-9, 1950, TPRC pages 247 and 1160[30] Second Run: Same Specimen, same USAEC Report.[30] CaO stabilized: Density=4.046 g cm−3 (66.3% of theoretical). Feith, A. D., Gen. Elec. Co., Adv. Tech. Service, USAEC Rept. GEMP-296, 1-25, 1964, TPRC pages 247 and 1165[30] | |
Material | Thermal conductivity [W·m−1·K−1] | Temperature [K] | Electrical conductivity @ 293 K [Ω−1·m−1] | Notes |
See also
- Laser flash analysis
- List of insulation material
- R-value (insulation)
- Specific heat capacity
- Thermal conductivity
- Thermal conductivities of the elements (data page)
- Thermal diffusivity
References
- ↑ Roger N. Wright (3 December 2010). "Wire Technology: Process Engineering and Metallurgy". Elsevier: 281. ISBN 978-0-12-382093-8.
- 1 2 3 4 5 6 http://www.goodfellow.com/E/Polymethylmethacrylate.html
- 1 2 http://www.plexiglas.com/tds/4b.pdf
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 Hukseflux Thermal Sensors
- 1 2 3 4 5 6 7 8 9 10 11 12 13 Pears, C.D. in Touloukian, Y.S., Powell, R.W., Ho, C.Y. and Klemens, P.G. Thermophysical and Electronic Properties Information and Analysis Center Lafayette In, TPRC Data Series Volume 2, (1971) pages 145-6, Reference No. 144, page 1162>PDF at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA951936. Retrieved 29 March 2016 at 10:05 PM (UTC).
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Thermal conductivities of the elements (data page)
- 1 2 3 4 http://www.goodfellow.com/E/Copper.html
- 1 2 "Thermal Insulation Properties of Expanded Polystyrene as Construction and Insulating Materials" (PDF). Demirel University.
- 1 2 3 Touloukian, Y S; Liley, P E; Saxena, S C (1970). Thermophysical Properties of Matter - The TPRC Data Series. 3. Touloukian, Powell, Ho and Klemens, Purdue Research Foundation, TPRC Data Series Volume 3 (1970)
- 1 2 3 4 5 6 7 8 9 Marble Institute of America (2 values are usually given: the highest and lowest test scores)
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 HyperPhysics, most from Young, Hugh D., University Physics, 7th Ed., Addison Wesley, 1992. Table 15-5. (most data should be at 293 K (20 °C; 68 °F))
- 1 2 http://www.engineeringtoolbox.com/air-properties-d_156.html
- 1 2 3 4 5 6 "Thermal conductivity of gases", CRC Handbook, p. 6–195.
- 1 2 3 4 5 6 7 8 9 10 11 12 Weast, Robert C., Editor-in chief, Handbook of Chemistry and Physics, 48th Edition, 1967-1968, Cleveland: The Chemical Rubber Co., 1967.
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Lasance, Clemens J., "The Thermal Conductivity of Air at Reduced Pressures and Length Scales," Electronics Cooling, November 2002, http://www.electronics-cooling.com/2002/11/the-thermal-conductivity-of-air-at-reduced-pressures-and-length-scales/ Retrieved 05:20, 10 April 2016 (UTC).
- 1 2 Pawar, S. D.; Murugavel, P.; Lal, D. M. (2009). "Effect of relative humidity and sea level pressure on electrical conductivity of air over Indian Ocean". Journal of Geophysical Research. 114: D02205. Bibcode:2009JGRD..11402205P. doi:10.1029/2007JD009716.
- ↑ tf technifab at https://technifab.com/cryogenic-resource-library/cryogenic-thermodynamics/cryogenic-insulation/. Retrieved 11:40 PM on Monday April 11, 2016 (UTC).
- 1 2 3 4 5 6 7 8 9 http://www.engineeringtoolbox.com/thermal-conductivity-liquids-d_1260.html
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Touloukian, Powell, Ho and Klemens, Purdue Research Foundation, TPRC Data Series Volume 1 (1970): http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA951935. Retrieved 9:30 AM April 13, 2016 (UTC).
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 http://www.engineeringtoolbox.com/thermal-conductivity-metals-d_858.html
- 1 2 3 4 5 6 7 8 9 10 11 12 13 http://www.engineersedge.com/properties_of_metals.htm
- 1 2 3 4 5 6 7 Greg Becker; Chris Lee & Zuchen Lin (July 2005). "Thermal conductivity in advanced chips — Emerging generation of thermal greases offers advantages". Advanced Packaging: 2–4. Retrieved 4 March 2008.
- 1 2 3 http://www.goodfellow.com/E/Aluminium.html
- 1 2 3 4 5 6 7 Electrical resistivities of the elements (data page)
- 1 2 3 4 http://www.goodfellow.com/E/AluminiumNitride'.html
- 1 2 3 4 http://www.goodfellow.com/E/Alumina.html
- 1 2 3 Alumina (Al2O3) - Physical, Mechanical, Thermal, Electrical and Chemical Properties - Supplier Data by Ceramaret
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 R.W.Powell, C.Y.Ho and P.E.Liley, Thermal Conductivity of Selected Materials, NSRDS-NBS 8, Issued November 25, 1966, pages 73-83>Link Text
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 Touloukian, Y.S., Powell, R.W., Ho, C.Y. and Klemens, P.G. Thermophysical and Electronic Properties Information and Analysis Center Lafayette In, TPRC Data Series Volume 2, (1971)>PDF at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA951936
- 1 2 3 4 5 6 7 8 http://www.engineersedge.com/heat_transfer/thermal-conductivity-gases.htm
- 1 2 3 4 http://www.goodfellow.com/E/Beryllia.html
- 1 2 3 4 http://www.goodfellow.com/E/Brass.html
- 1 2 3 4 5 http://www.goodfellow.com/E/Brass'.html
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Leeds Beckett University, Virtual Maths: http://www.virtualmaths.org/activities/topic_data-handling/heatloss/resources/thermal-conductivity-of-building-materials.pdf. Retrieved March 29, 2016 at 11:12 PM (UTC).
- 1 2 3 4 5 6 http://www.goodfellow.com/E/Bronze.html
- 1 2 http://www.engineeringtoolbox.com/calcium-silicate-insulation-k-values-d_1171.html
- 1 2 http://encyclopedia.airliquide.com/encyclopedia.asp?GasID=26
- 1 2 http://www.engineeringtoolbox.com/carbon-dioxide-d_1000.html
- 1 2 3 4 5 6 "Carbon nanotubes : Reinforced metal matrix composites" by A.Agarwal, S.R.Bakshi and D.Lahiri, CRC Press, 2011 (ch.1, p.8, chart 1.1 : physical properties of carbon materials )
- 1 2 3 4 5 6 7 8 "Carbon Nanotubes: Thermal Properties" (PDF). Retrieved 6 June 2009.
- 1 2 Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L.; et al. (1 June 2001). "Thermal transport measurements of individual multiwalled nanotubes". Physical Review Letters. 87 (21): 215502–215506. arXiv:cond-mat/0106578. Bibcode:2001PhRvL..87u5502K. doi:10.1103/PhysRevLett.87.215502. PMID 11736348.
- 1 2 Pop, Eric; Mann, David; Wang, Qian; Goodson, Kenneth; Dai, Hongjie; et al. (22 December 2005). "Thermal conductance of an individual single-wall carbon nanotube above room temperature". Nano Letters. 6 (1): 96–100. arXiv:cond-mat/0512624. Bibcode:2006NanoL...6...96P. doi:10.1021/nl052145f. PMID 16402794.
- 1 2 3 4 Berber, Savas; Kwon, Young-Kyun; Tománek, David (23 February 2000). "Unusually high thermal conductivity of carbon nanotubes". Physical Review Letters. 84 (20): 4613–4616. arXiv:cond-mat/0002414. Bibcode:2000PhRvL..84.4613B. doi:10.1103/PhysRevLett.84.4613. PMID 10990753.
- 1 2 Li, Qingwen; Li, Yuan; Chikkannanavar, S. B.; Zhao, Y. H.; Dangelewicz, A. M.; Zheng, L. X.; Doorn, S. K.; et al. (2007). "Structure-Dependent Electrical Properties of Carbon Nanotube Fibers". Advanced Materials. 19 (20): 3358–3363. doi:10.1002/adma.200602966.
- 1 2 International Standard EN-ISO 10456:2007 'Building materials and products - Hygrothermal properties - Tabulated design values and procedures for determining declared and design thermal values'
- 1 2 3 4 5 6 Great Soviet Encyclopedia, 3rd Edition (Moscow 1976) in English Translation, New York: Macmillian Inc., 1980, volume 25 page 593.
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 CRC handbook of chemistry and physics(subscription required)(HTTP cookies required)
- 1 2 3 4 5 6 7 8 9 Other references listed within Wikipedia (this table may not be cited, pure elements are sourced from Chemical elements data references, otherwise an in-table linked-page must list the relevant references)
- 1 2 3 4 Anthony, T. R.; Banholzer, W. F.; Fleischer, J. F.; Wei, Lanhua; Kuo, P. K.; Thomas, R. L.; Pryor, R. W. (27 December 1989). "Thermal conductivity of isotopically enriched 12C diamond". Physical Review B. 42 (2): 1104–1111. Bibcode:1990PhRvB..42.1104A. doi:10.1103/PhysRevB.42.1104.
- 1 2 3 4 Wei, Lanhua; Kuo, P. K.; Thomas, R. L.; Anthony, T. R.; Banholzer, W. F. (16 February 1993). "Thermal conductivity of isotopically modified single crystal diamond". Physical Review Letters. 70 (24): 3764–3767. Bibcode:1993PhRvL..70.3764W. doi:10.1103/PhysRevLett.70.3764. PMID 10053956.
- ↑ "MG 832TC Thermally Conductive Epoxy".
- ↑ "OMEGABOND OB-100/101/200 Thermally Conductive Epoxies" (PDF).
- ↑ Timothy W. Tong (8 June 1994). Thermal Conductivity 22. CRC. p. 718. ISBN 978-1-56676-172-7.
- 1 2 3 4 http://www.goodfellow.com/E/Polystyrene.html
- 1 2 3 4 http://www.goodfellow.com/E/Silica.html
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 [R.W.Powell, C.Y.Ho and P.E.Liley, Thermal Conductivity of Selected Materials, NSRDS-NBS 8, November 25, 1966, pp. 67, 68, and 89. http://www.nist.gov/data/nsrds/NSRDS-NBS-8.pdf Link text]
- 1 2 3 4 Serway, Raymond A. (1998). Principles of Physics (2nd ed.). Fort Worth, Texas; London: Saunders College Pub. p. 602. ISBN 0-03-020457-7.
- 1 2 Griffiths, David (1999) [1981]. "7. Electrodynamics". In Alison Reeves (ed.). Introduction to Electrodynamics (3rd ed.). Upper Saddle River, New Jersey: Prentice Hall. p. 286. ISBN 0-13-805326-X. OCLC 40251748.
- ↑ T.M.Yarwood & F. Castle, Physical and Mathematical Tables, Glascow: The University Press, 1970 page 38.
- 1 2 3 http://www.goodfellow.com/E/Gold.html
- ↑ Izett, G. A., "Granite" Exploration Hole, Area 15, Nevada Test Site, NYE County, Nevada -- Interim Report, Part C, Physical Properties, January 1960>http://www.pubs.usgs.gov/tem/0836c.pdf
- 1 2 3 Balandin, Alexander A.; Ghosh, Suchismita; Bao, Wenzhong; Calizo, Irene; Teweldebrhan, Desalegne; Miao, Feng; Lau, Chun Ning; et al. (20 February 2008). "Superior Thermal Conductivity of Single-Layer Graphene". Nano Letters ASAP. 8 (3): 902–907. Bibcode:2008NanoL...8..902B. doi:10.1021/nl0731872. PMID 18284217.
- ↑ Physicists Show Electrons Can Travel More Than 100 Times Faster in Graphene
- 1 2 3 Properties of Graphite
- ↑ Clifford A. Hampel (1968). The Encyclopedia of the Chemical Elements. New York: Van Nostrand Reinhold. pp. 256–268. ISBN 0-442-15598-0.
- ↑ Green Fiber Blow-in Attic Insulation at Home Depot 2016>http://www.homedepot.com/catalog/pdfImages/1d/1dcde6e6-eb26-47e1-8223-5f3cc1840add.pdf. Retrieved March 29, 2016 at 11:08 PM (UTC).
- ↑ Owens Corning, AttiCat, Product Data Sheet: http://insulation.owenscorning.com/assets/0/428/429/431/af2a2cae-f7c3-43bd-8e88-9313ed87dd2d.pdf. Retrieved March 29, 2016 at 11:10 PM (UTC).
- 1 2 Owens Corning, EcoTouch Product Data Sheet: http://insulation.owenscorning.com/assets/0/428/429/431/b507cdf1-d1f4-4e08-930f-9d5e88c6b6ce.pdf. Retrieved March 29, 2016 at 11:11 PM (UTC).
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Bureau of Standards Letter Circular No. 227, nd., in Weast, R. C., Editor-in Chief, Handbook of Chemistry and Physics, 48th Edition, 1967-68, Cleveland: The Chemical Rubber Co., 1967, page E-5.
- ↑ M. J. Assael; S. Mixafendi; W. A. Wakeham (1 July 1986). "The Viscosity and Thermal Conductivity of Normal Hydrogen in the Limit of Zero Density" (PDF). NIST. Retrieved 2 April 2015.
- 1 2 http://www.engineeringtoolbox.com/ice-thermal-properties-d_576.html
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Sheffield Pottery,Link Text
- 1 2 3 http://www.goodfellow.com/E/Iron.html
- 1 2 3 http://www.goodfellow.com/E/Lead.html
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Touloukian, Y.S., Powell, R.W., Ho, C.Y. and Klemens, P.G. Thermophysical and Electronic Properties Information and Analysis Center Lafayette In, TPRC Data Series Volume 2, (1971) pages 820-822>PDF at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA951936
- 1 2 http://encyclopedia.airliquide.com/Encyclopedia.asp?GasID=41
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 http://www.goodfellow.com/Home.aspx?LangType=2057
- 1 2 3 4 5 6 7 8 9 [Engineering Research Bulletin No. 40, Rutgers University (1958) quoted by Weast, R.C., Editor-in-Chief, Handbook of Chemistry and Physics, 48th edition, Cleveland: The Chemical Rubber Publishing Co. 1967-1968, page E-5.]
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 R.W.Powell, C.Y.Ho and P.E.Liley, Thermal Conductivity of Selected Materials, NSRDS-NBS 8, Issued November 25, 1966, page 99>Link Text
- ↑ R.W.Powell, C.Y.Ho and P.E.Liley, Thermal Conductivity of Selected Materials, NSRDS-NBS 8, Issued November 25, 1966, pages 69, 99>Link Text
- 1 2 3 http://www.goodfellow.com/E/Quartz-Fused.html
- 1 2 3 4 5 6 7 8 9 10 11 12 [Ratcliffe, E.H., National Physical Laboratory, Teddington, Middlesex, England, quoted by Weast, R.C. Editor-in-Chief, Handbook of Chemistry and Physics, 48th edition, 1967-1968, Cleveland: Chemical Rubber Publishing Co., page E6.]
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Mason, C.R., Walton, J.D., Bowen, M.D. and Teague, W.T. (1959) in R.W.Powell, C.Y.Ho and P.E.Liley, Thermal Conductivity of Selected Materials, NSRDS-NBS 8, Issued November 25, 1966, pages 99, 103>Link Text
- 1 2 3 4 5 6 7 8 9 10 11 Touloukian, Y.S., Powell, R.W., Ho, C.Y. and Klemens, P.G. Thermophysical and Electronic Properties Information and Analysis Center Lafayette In, TPRC Data Series Volume 2, (1971) pages 177-180>PDF at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA951936
- 1 2 http://esrla.com/pdf/ricehullhouse.pdf
- 1 2 http://edoc.gfz-potsdam.de/gfz/get/15306/0/69070f5918278d63d23cfce5cbad024a/15306.pdf
- 1 2 3 http://energy.lbl.gov/ECS/aerogels/sa-thermal.html Thermal Properties - Silica Aerogels
- 1 2 3 http://www.goodfellow.com/E/Silver.html
- ↑ S. Vandana (1 December 2002). "Alternative Energy". APH: 45. ISBN 978-81-7648-349-0{{inconsistent citations}}
- 1 2 http://www.almazoptics.com/NaCl.htm
- 1 2 Soil Sci Journals
- 1 2 3 4 5 6 7 8 de Vries, D. A. and Peck, A. J., "On the Cylindrical Probe Method of Measuring Thermal Conductivity With Special Reference to Soils. I. Extension of Theory and Discussion of Probe Characteristics," Australian Journal of Physics, 11 (2), [pp 255-71] page 262, 1958> http://www.publish.csiro.au/?act=view_file&file_id=PH580255.pdf. Retrieved 29 March 2016 at 9:17 PM (UTC).
- 1 2 "Thermal Conductivity-of Solders".
- 1 2 http://www.goodfellow.com/E/Stainless-Steel-AISI-302.html
http://www.goodfellow.com/E/Stainless-Steel-AISI-304.html
http://www.goodfellow.com/E/Stainless-Steel-AISI-310.html
http://www.goodfellow.com/E/Stainless-Steel-AISI-316.html
http://www.goodfellow.com/E/Stainless-Steel-AISI-321.html - 1 2 3 http://www.goodfellow.com/E/Stainless-Steel-17-7PH.html
- 1 2 3 4 http://www.goodfellow.com/E/Stainless-Steel-AISI-410.html
- ↑ "STYROFOAM : Declared Thermal Resistance". Dow.
- ↑ "3M™ Thermally Conductive Adhesive Transfer Tape 8805". 3M. 2015.
- 1 2 3 http://www.goodfellow.com/E/Titanium.html
- 1 2 3 http://www.goodfellow.com/E/Titanium-Aluminium-Vanadium.html
- 1 2 3 Tungsten
- 1 2 3 4 5 6 "2.7.9 Physical properties of sea water". www.kayelaby.npl.co.uk/ - www.npl.co.uk/. Retrieved 25 January 2010.
- 1 2 "Thermal conductivity of saturated H2O and D2O, CRC Handbook, p. 6–4.
- 1 2 3 4 5 6 7 "Physical Properties and Moisture Relations of Wood" (PDF).
- David R. Lide, ed. (2003). CRC Handbook of Chemistry and Physics (84th ed.). Boca Raton, FL: CRC Press. ISBN 0-8493-0484-9.
External links
- Heat Conduction Calculator
- Thermal Conductivity Online Converter - An online thermal conductivity calculator
- Thermal Conductivities of Solders
- Thermal conductivity of air as a function of temperature can be found at James Ierardi's Fire Protection Engineering Site
- Non-Metallic Solids: The thermal conductivites of non-metallic solids are found in about 1286 pages in the TPRC Data Series volume 2 at the PDF link here: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA951936
- Gasses and Liquids: The thermal conductivities of gasses and liquids are found in the TPRC Data Series volume 3 at the PDF link here: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA951937
- Metals: The thermal conductivities of metals are found in about 1595 pages in the TPRC Data Series volume 1 at the PDF link here: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA951935
- Vacuums: Vacuums and various levels of vacuums and the thermal conductivites of air at reduced pressures are known at http://www.electronics-cooling.com/2002/11/the-thermal-conductivity-of-air-at-reduced-pressures-and-length-scales/