MRPS5

MRPS5
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
Aliases MRPS5, MRP-S5, S5mt, mitochondrial ribosomal protein S5
External IDs MGI: 1924971 HomoloGene: 32726 GeneCards: MRPS5
Orthologs
Species Human Mouse
Entrez

64969

77721

Ensembl

ENSG00000144029

ENSMUSG00000027374

UniProt

P82675

Q99N87

RefSeq (mRNA)

NM_031902
NM_001321995
NM_001321996
NM_001321997

NM_029963

RefSeq (protein)

NP_114108.1

NP_084239.1

Location (UCSC) Chr 2: 95.09 – 95.15 Mb Chr 2: 127.59 – 127.61 Mb
PubMed search [1] [2]
Wikidata
View/Edit HumanView/Edit Mouse

28S ribosomal protein S5, mitochondrial is a protein that in humans is encoded by the MRPS5 gene.[3]

Function

Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that belongs to the ribosomal protein S5P family. Pseudogenes corresponding to this gene are found on chromosomes 4q, 5q, and 18q.[3]

Model organisms

Model organisms have been used in the study of MRPS5 function. A conditional knockout mouse line called Mrps5tm1b(EUCOMM)Wtsi was generated at the Wellcome Trust Sanger Institute.[4] Male and female animals underwent a standardized phenotypic screen[5] to determine the effects of deletion.[6][7][8][9] Additional screens performed: - In-depth immunological phenotyping[10]

References

  1. "Human PubMed Reference:".
  2. "Mouse PubMed Reference:".
  3. 1 2 "Entrez Gene: MRPS5 mitochondrial ribosomal protein S5".
  4. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  5. 1 2 "International Mouse Phenotyping Consortium".
  6. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410Freely accessible. PMID 21677750.
  7. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  8. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  9. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207Freely accessible. PMID 23870131.
  10. 1 2 "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading


This article is issued from Wikipedia - version of the 5/20/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.