Nicolas Gisin

Nicolas Gisin

photo: Mireille Gisin 2014
Born (1952-05-29) 29 May 1952
Geneva, Switzerland
Residence Switzerland
Nationality Swiss
Fields Physicist
Institutions University of Geneva
Known for

Quantum nonlocality
Long distance quantum communication
Quantum cryptography and teleportation

Foundations of quantum physics

Nicolas Gisin (born 1952) is a Swiss physicist and professor at the University of Geneva working on quantum information and communication, as well as on the foundations of quantum mechanics. His work includes both experimental and theoretical physics. He has done significant work on the fields of experimental quantum cryptography and long distance quantum communication in standard telecom optical fibres. As a theoretician, Gisin brought deep insights into quantum mechanics. He is also the first to develop quantum information technology to such a level that it was for the first time possible to take it out of the lab and into the commercial world: he co-founded IDQuantique, a spin-off company which quickly developed into one of the world leaders in the field of quantum information and communication technologies.

Biography

Nicolas Gisin was born in Geneva-Switzerland on May 29, 1952. After several years in software and optical communication industries, he joined the Group of Applied Physics at the University of Geneva in 1994 where he started the activities in optics. Since 2000 he is Director of the Department of Applied Physics.,[1] leading a large group of research in Quantum Information and Communication. Europe recognized his leadership by awarding him two successive ERC Advanced Grants.[2][3] In 2009 he received the first biennial John Stewart Bell Prize.[4] In 2011 he received the prize of the Geneva City.[5] In 2014 Switzerland recognized his impact by awarding him the Swiss Science prize sponsored by the Foundation Marcel Benoist[6] and delivered by the National Government. Gisin published a popular book in which he explains without mathematics, but also without hiding the difficult concepts, modern quantum physics and some of its fascinating applications. His book, entitle “Quantum Chance” has been translated from French into English, German, Chinese, Korean and Russian. His main hobby is field-hockey. He played at the top Swiss level and was president of Servette HC from 2000 to 2015, bringing his club to become the largest in Switzerland. In 2010 his club was awarded the title of the “Club of the year” by the European Hockey Federation.[7][8] In 2014 the first team won the Swiss championship for the first time in the century long history of the club.

Research

Awards

References

  1. Leader of the Group of Applied Physics
  2. ERC Quantum Correlations
  3. ERC Macroscopic Entanglement in Crystals
  4. First John Stewart Bell Prize ceremony
  5. Prix de la Ville de Genève
  6. Video of the Marcel Benoist Prize Ceremony
  7. EuroHockey Club Of The Year
  8. Photos of the EuroHockey Club Of the Year
  9. Experimental demonstration of quantum cryptography using polarized photons in optical-fiber over more than 1 km, A. Muller, J. Bréguet and N. Gisin, Europhys. Lett. 23, 383 (1993).
  10. Underwater quantum coding, A. Muller, H. Zbinden and N. Gisin, Nature 378, 449 (1995).
  11. Quantum cryptography over 23 km in installed under-lake telecom fibre, A. Muller, H. Zbinden and N. Gisin, Europhys. Lett. 33, 335 (1996).
  12. Quantum Key Distribution over 67 km with a plug&play system, D. Stucki, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden, New Journal of Physics, 4, 41 (2002).
  13. Provably secure and practical quantum key distribution over 307 km of optical fibre, B. Korzh et al., Nature Photonics Letter, 9, 163-168 (2015).
  14. Violation of Bell inequalities by photons more than 10 km apart, W. Tittel, J. Brendel, H. Zbinden and N. Gisin, Physical Review Letters 81, 3563 (1998).
  15. Faster-than-light
  16. Long-distance Bell-type tests using energy-time entangled photons, W. Tittel,* J. Brendel, N. Gisin, and H. Zbinden, Phys. Rev. A 59, 4150-4163 (1999).
  17. Bell inequality and the locality loophole: Active versus passive switches, N. Gisin ), H. Zbinden, Phys. Lett. A 264, 103-107 (1999).
  18. Experimental test of nonlocal quantum correlation in relativistic configurations, H. Zbinden, J. Brendel, N. Gisin and W. Tittel, Physical Review A 63, 022111 (2001).
  19. Quantum correlations with spacelike separated beam splitters in motion: Experimental test of multisimultaneity, A. Stefanov, H. Zbinden, N. Gisin and A. Suarez, Phys. Rev. Lett. 88, 120404 (2002).
  20. Testing the speed of 'spooky action at a distance', D. Salart, A. Baas, C. Branciard, Cyril, N. Gisin and H. Zbinden, Nature 454, 861-864 (2008).
  21. Quantum non-locality based on finite-speed causal influences leads to superluminal signalling, J-D. Bancal, S. Pironio, A. Acín, Y-C. Liang, V. Scarani and N. Gisin, Nature Physics 8, 867-870 (2012).
  22. Quantum correlations in Newtonian space and time: arbitrarily fast communication or nonlocality, N. Gisin, in Quantum Theory: a two-time success story, Yakir Aharonov Festschrift, pp 185-204, Springer 2014
  23. Long-distance teleportation of qubits at telecommunication wavelengths, I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden and N. Gisin, Nature 421, 509-513 (2003).
  24. Quantum teleportation over the Swisscom telecommunication network, O. Landry, J.A.W. van Houwelingen, A. Beveratos, H. Zbinden and N. Gisin, J. Opt. Soc. Am. B 24, 398-403 (2007).
  25. Performance of InGaAsInP avalanche photodiodes as gated-mode photon counters, G. Ribordy, J.D. Gautier, H. Zbinden and N. Gisin, Applied Optics, 37, 2272 (1998).
  26. Multimode quantum memory based on atomic frequency combs, M. Afzelius, Ch. Simon, H. de Riedmatten and N. Gisin, Physical Review A 79, 052329 (2009).
  27. A solid-state light-matter interface at the single-photon level, H. de Riedmatten, M. Afzelius, M. Staudt, Ch. Simon and N. Gisin, Nature, 456, 773-777 (2008).
  28. Quantum storage of photonic entanglement in a crystal, Ch. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten and N. Gisin, Nature, 469, 508-511 (2011).
  29. 1 2 Heralded quantum entanglement between two crystals, I. Usmani, Ch. Clausen, F. Bussieres, N. Sangouard, M. Afzelius and N. Gisin, Nature Photonics 6, 234-237 (2012).
  30. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory, F. Bussières, Ch. Clausen et al., Nature Photonics 8, 775-778 (2014).
  31. The size of quantum superpositions as measured with “classical” detectors, Pavel Sekatski, Nicolas Sangouard, Nicolas Gisin, Physical Review A89, 012116 (2014).
  32. How difficult it is to prove the quantumness of macroscopic states? P. Sekatski, N. Sangouard and N. Gisin, Phys. Rev. Lett. 113, 090403 (2014).
  33. Displacement of entanglement back and forth between the micro and macro domains, Natalia Bruno, Anthony Martin, Pavel Sekatski, Nicolas Sangouard, Rob Thew and Nicolas Gisin, Nature Physics, 9, 545-548 (2013).
  34. Bell inequality hold for all non-product states, N. Gisin, Phys. Lett. A 154, 201 (1991).
  35. Stochastic quantum dynamics and relativity, N. Gisin, Helvetica Physica Acta 62, 363-371 (1989).
  36. Relevant and irrelevant nonlinear Schrodinger equations, N. Gisin and M. Rigo, Phys. A, 28, 7375- 7390 (1995).
  37. Quantum cloning without signalling, N. Gisin, Phys. Lett. A 242, 1 (1998).
  38. From Bell's theorem to secure quantum key distribution, A. Acin, N. Gisin and L. Masanes, Phys. Rev. Lett. 97, 120405 (2006).
  39. Device-independent security of quantum cryptography against collective attacks, A. Acin, N. Brunner, N. Gisin, S. Massar, S. Pironio and V. Scarani, Phys. Rev. Lett. 98, 230501 (2007).
  40. Device-independent quantum key distribution secure against collective attacks, S. Pironio, A. Acin, N. Brunner, N. Gisin, S. Massar and V. Scarani, New Journal of Physics, 11, 1-25 (2009).
  41. Quantum measurements and stochastic processes, N. Gisin, Phys. Rev. Lett. 52, 1657 (1984).
  42. The Quantum State Diffusion model applied to open systems, N. Gisin and I.C. Percival, J. Phys. A, 25, 5677-5691 (1992).
  43. Polarization mode dispersion of short and long single mode fibers, N. Gisin, J.P. Von Der Weid and J.P. Pellaux, IEEE J. Lightwave Technology, 9, 821-827 (1991).
  44. Polarization mode dispersion: Time domain versus Frequency domain, N. Gisin and J.P. Pellaux, Optics Commun., 89, 316-323 (1992).
  45. Optical Telecom Networks as Weak Quantum Measurements with Post-selection, N. Brunner, A. Acin, D.Collins, N. Gisin et V. Scarani, Physical Review Letters, 91, 180402 (2003).
This article is issued from Wikipedia - version of the 11/7/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.