2-bridge knot

Schematic picture of a 2-bridge knot.

In the mathematical field of knot theory, a 2-bridge knot is a knot which can be isotoped so that the natural height function given by the z-coordinate has only two maxima and two minima as critical points. Equivalently, these are the knots with bridge number 2, the smallest possible bridge number for a nontrivial knot.

Other names for 2-bridge knots are rational knots, 4-plats, and Viergeflechte (German for four braids). 2-bridge links are defined similarly as above, but each component will have one min and max. 2-bridge knots were classified by Horst Schubert, using the fact that the 2-sheeted branched cover of the 3-sphere over the knot is a lens space.

The names rational knot and rational link were coined by John Conway who defined them as arising from numerator closures of rational tangles.

Further reading

External links


This article is issued from Wikipedia - version of the 3/10/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.