Extraction of petroleum
The extraction of petroleum is the process by which usable petroleum is drawn out from beneath the earth's surface.
Locating the oil field
Geologists use seismic surveys to search for geological structures that may form oil reservoirs. The "classic" method includes making an underground explosion nearby and observing the seismic response that provides information about the geological structures under the ground . However, "passive" methods that extract information from naturally-occurring seismic waves are also used.[1]
Other instruments such as gravimeters and magnetometers are also used in the search for petroleum. Extracting crude oil normally starts with drilling wells into an underground reservoir. When an oil well has been tapped, a geologist (known on the rig as the "mudlogger") will note its presence. Such a "mudlogger" is known to be sitting on the rig. Historically in the United States, some oil fields existed where the oil rose naturally to the surface, but most of these fields have long since been used up, except in certain places in Alaska. Often many wells (called multilateral wells) are drilled into the same reservoir, to ensure that the extraction rate will be economically viable. And some wells (secondary wells) may be used to pump water, steam, acids or various gas mixtures into the reservoir to raise or maintain the reservoir pressure so as to maintain an economic extraction rate.
Drilling
The oil well is created by drilling a long hole into the earth with an oil rig. A steel pipe (casing) is placed in the hole, to provide structural integrity to the newly-drilled well bore. Holes are then made in the base of the well to enable oil to pass into the bore. Finally a collection of valves called a "Christmas Tree" is fitted to the top, the valves regulate pressures and control flow.
Oil extraction and recovery
Primary recovery
During the primary recovery stage, reservoir drive comes from a number of natural mechanisms. These include: natural water displacing oil downward into the well, expansion of the natural gas at the top of the reservoir, expansion of gas initially dissolved in the crude oil, and gravity drainage resulting from the movement of oil within the reservoir from the upper to the lower parts where the wells are located. Recovery factor during the primary recovery stage is typically 5-15%.[2]
While the underground pressure in the oil reservoir is sufficient to force the oil to the surface, all that is necessary is to place a complex arrangement of valves (the Christmas tree) on the well head to connect the well to a pipeline network for storage and processing. Sometimes pumps, such as beam pumps and electrical submersible pumps (ESPs), are used to bring the oil to the surface; these are known as artificial lifting mechanisms.
Secondary recovery
Over the lifetime of the well, the pressure falls and at some point there is insufficient underground pressure to force the oil to the surface. After natural reservoir drive diminishes, secondary recovery methods are applied. They rely on the supply of external energy into the reservoir in the form of injecting fluids to increase reservoir pressure, hence replacing or increasing the natural reservoir drive with an artificial drive. Secondary recovery techniques increase the reservoir's pressure by water injection, natural gas reinjection and gas lift, which injects air, carbon dioxide or some other gas into the bottom of an active well, reducing the overall density of fluid in the wellbore. Typical recovery factor from water-flood operations is about 30%, depending on the properties of the oil and the characteristics of the reservoir rock. On average, the recovery factor after primary and secondary oil recovery operations is between 35 and 45%.[2]
Enhanced recovery
Enhanced, or Tertiary oil recovery methods, increase the mobility of the oil in order to increase extraction.
Thermally enhanced oil recovery methods (TEOR) are tertiary recovery techniques that heat the oil, reducing its viscosity and making it easier to extract. Steam injection is the most common form of TEOR, and it is often done with a cogeneration plant. This type of cogeneration plant uses a gas turbine to generate electricity, and the waste heat is used to produce steam, which is then injected into the reservoir. This form of recovery is used extensively to increase oil extraction in the San Joaquin Valley, which yields a very heavy oil, yet accounts for ten percent of the United States' oil extraction. Fire flooding (In-situ burning) is another form of TEOR, but instead of steam, some of the oil is burned to heat the surrounding oil.
Occasionally, surfactants (detergents) are injected to alter the surface tension between the water and the oil in the reservoir, mobilizing oil which would otherwise remain in the reservoir as residual oil.[3]
Another method to reduce viscosity is carbon dioxide flooding.
Tertiary recovery allows another 5% to 15% of the reservoir's oil to be recovered.[2] In some California heavy oil fields, steam injection has doubled or even tripled the oil reserves and ultimate oil recovery.[4] For example, see Midway-Sunset Oil Field, California's largest oilfield.
Tertiary recovery begins when secondary oil recovery is not enough to continue adequate extraction, but only when the oil can still be extracted profitably. This depends on the cost of the extraction method and the current price of crude oil. When prices are high, previously unprofitable wells are brought back into use, and when they are low, extraction is curtailed.
The use of microbial treatments is another tertiary recovery method. Special blends of the microbes are used to treat and break down the hydrocarbon chain in oil, making the oil easy to recover. It is also more economical versus other conventional methods. In some states such as Texas, there are tax incentives for using these microbes in what is called a secondary tertiary recovery. Very few companies supply these, however, companies like Bio Tech, Inc. have proven very successful in waterfloods across Texas.
Recovery rates and factors
The amount of oil that is recoverable is determined by a number of factors, including the permeability of the rocks, the strength of natural drives (the gas present, pressure from adjacent water or gravity), and the viscosity of the oil. When the reservoir rocks are "tight" such as in shale, oil generally cannot flow through, but when they are permeable such as in sandstone, oil flows freely.
Estimated ultimate recovery
Although recovery of a well cannot be known with certainty until the well ceases production, petroleum engineers often determine an estimated ultimate recovery (EUR) based on decline rate projections years into the future. Various models, mathematical techniques, and approximations are used.
Shale gas EUR is difficult to predict, and it is possible to choose recovery methods that tend to underestimate decline of the well beyond that which is reasonable.
See also
- Drilling rig
- Drilling fluid
- Mud logger
- Roughneck
- Directional drilling
- Oil platform
- Driller (oil)
- Deep well drilling
- Block (extraction of petroleum)
- Blowout (well drilling)
- Hydraulic fracturing
- List of countries by oil production
- Peak Oil
- List of natural gas and oil production accidents in the United States
External links
References
- ↑ A technology web site of a passive - seismic based company
- 1 2 3 E. Tzimas, (2005). "Enhanced Oil Recovery using Carbon Dioxide in the European Energy System" (PDF). European Commission Joint Research Center. Retrieved 2012-11-01.
- ↑ "New Billions In Oil" Popular Mechanics, March 1933 -- ie article on invention of water injection and detergents for oil recovery
- ↑ Growth History of Oil Reserves in Major California Oil Fields During the Twentieth Century, USGS Bulletin 2172-H, 2005