Molecular motor

This article is about biological molecular motors. For man-made molecular motors, see Synthetic molecular motor.

Molecular motors are biological molecular machines that are the essential agents of movement in living organisms. In general terms, a motor is a device that consumes energy in one form and converts it into motion or mechanical work; for example, many protein-based molecular motors harness the chemical free energy released by the hydrolysis of ATP in order to perform mechanical work.[1] In terms of energetic efficiency, this type of motor can be superior to currently available man-made motors. One important difference between molecular motors and macroscopic motors is that molecular motors operate in the thermal bath, an environment in which the fluctuations due to thermal noise are significant.

Examples

Some examples of biologically important molecular motors:[2]

Theoretical considerations

Because the motor events are stochastic, molecular motors are often modeled with the Fokker-Planck equation or with Monte Carlo methods. These theoretical models are especially useful when treating the molecular motor as a Brownian motor.

Experimental observation

In experimental biophysics, the activity of molecular motors is observed with many different experimental approaches, among them:

Many more techniques are also used. As new technologies and methods are developed, it is expected that knowledge of naturally occurring molecular motors will be helpful in constructing synthetic nanoscale motors.

Non-biological

Recently, chemists and those involved in nanotechnology have begun to explore the possibility of creating molecular motors de novo. These synthetic molecular motors currently suffer many limitations that confine their use to the research laboratory. However, many of these limitations may be overcome as our understanding of chemistry and physics at the nanoscale increases. Systems like the nanocars, while not technically motors, are illustrative of recent efforts towards synthetic nanoscale motors.

See also

References

  1. Bustamante C, Chemla YR, Forde NR, Izhaky D (2004). "Mechanical processes in biochemistry". Annu. Rev. Biochem. 73: 705–48. doi:10.1146/annurev.biochem.72.121801.161542. PMID 15189157.
  2. Nelson, P.; M. Radosavljevic; S. Bromberg (2004). Biological physics. Freeman.
  3. Tsunoda SP, Aggeler R, Yoshida M, Capaldi RA (January 2001). "Rotation of the c subunit oligomer in fully functional F1Fo ATP synthase". Proc. Natl. Acad. Sci. U.S.A. 98 (3): 898–902. Bibcode:2001PNAS...98..898T. doi:10.1073/pnas.031564198. PMC 14681Freely accessible. PMID 11158567.
  4. Dworkin J, Losick R (October 2002). "Does RNA polymerase help drive chromosome segregation in bacteria?". Proc. Natl. Acad. Sci. U.S.A. 99 (22): 14089–94. Bibcode:2002PNAS...9914089D. doi:10.1073/pnas.182539899. PMC 137841Freely accessible. PMID 12384568.
  5. I. Hubscher, U.; Maga, G.; Spadari, S. (2002). "Eukaryotic DNA polymerases". Annual Review of Biochemistry. 71: 133–63. doi:10.1146/annurev.biochem.71.090501.150041. PMID 12045093.
  6. Peterson C (1994). "The SMC family: novel motor proteins for chromosome condensation?". Cell. 79 (3): 389–92. doi:10.1016/0092-8674(94)90247-X. PMID 7954805.
  7. Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C (October 2001). "The bacteriophage straight phi29 portal motor can package DNA against a large internal force". Nature. 413 (6857): 748–52. Bibcode:2001Natur.413..748S. doi:10.1038/35099581. PMID 11607035.
  8. Harvey, SC (2015). "The scrunchworm hypothesis: Transitions between A-DNA and B-DNA provide the driving force for genome packaging in double-stranded DNA bacteriophages". Journal of Structural Biology. 189: 1–8. doi:10.1016/j.jsb.2014.11.012. PMID 25486612.

External links

This article is issued from Wikipedia - version of the 10/6/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.