Partially ordered group

In abstract algebra, a partially ordered group is a group (G,+) equipped with a partial order "≤" that is translation-invariant; in other words, "≤" has the property that, for all a, b, and g in G, if ab then a+gb+g and g+ag+b.

An element x of G is called positive element if 0 ≤ x. The set of elements 0 ≤ x is often denoted with G+, and it is called the positive cone of G. So we have ab if and only if -a+bG+.

By the definition, we can reduce the partial order to a monadic property: ab if and only if 0-a+b.

For the general group G, the existence of a positive cone specifies an order on G. A group G is a partially ordered group if and only if there exists a subset H (which is G+) of G such that:

A partially ordered group G with positive cone G+ is said to be unperforated if n · gG+ for some positive integer n implies gG+. Being unperforated means there is no "gap" in the positive cone G+.

If the order on the group is a linear order, then it is said to be a linearly ordered group. If the order on the group is a lattice order, i.e. any two elements have a least upper bound, then it is a lattice-ordered group (shortly l-group, though usually typeset with a script ell: -group).

A Riesz group is an unperforated partially ordered group with a property slightly weaker than being a lattice ordered group. Namely, a Riesz group satisfies the Riesz interpolation property: if x1, x2, y1, y2 are elements of G and xiyj, then there exists zG such that xizyj.

If G and H are two partially ordered groups, a map from G to H is a morphism of partially ordered groups if it is both a group homomorphism and a monotonic function. The partially ordered groups, together with this notion of morphism, form a category.

Partially ordered groups are used in the definition of valuations of fields.

Examples

See also

References

External links

This article is issued from Wikipedia - version of the 9/5/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.