Point estimation

In statistics, point estimation involves the use of sample data to calculate a single value (known as a statistic) which is to serve as a "best guess" or "best estimate" of an unknown (fixed or random) population parameter.

More formally, it is the application of a point estimator to the data.

In general, point estimation should be contrasted with interval estimation: such interval estimates are typically either confidence intervals in the case of frequentist inference, or credible intervals in the case of Bayesian inference.

Point estimators

Bayesian point-estimation

Bayesian inference is typically based on the posterior distribution. Many Bayesian point-estimators are the posterior distribution's statistics of central tendency, e.g., its mean, median, or mode:

The MAP estimator has good asymptotic properties, even for many difficult problems, on which the maximum-likelihood estimator has difficulties. For regular problems, where the maximum-likelihood estimator is consistent, the maximum-likelihood estimator ultimately agrees with the MAP estimator.[4][5][6] Bayesian estimators are admissible, by Wald's theorem.[5][7]

The Minimum Message Length (MML) point estimator is based in Bayesian information theory and is not so directly related to the posterior distribution.

Special cases of Bayesian filters are important:

Several methods of computational statistics have close connections with Bayesian analysis:

Properties of point estimates

See also

Notes

  1. Dodge, Yadolah, ed. (1987). Statistical data analysis based on the L1-norm and related methods: Papers from the First International Conference held at Neuchâtel, August 31–September 4, 1987. Amsterdam: North-Holland Publishing Co.
  2. Dodge, Yadolah, ed. (1987). Statistical data analysis based on the L1-norm and related methods: Papers from the First International Conference held at Neuchâtel, August 31–September 4, 1987. Amsterdam: North-Holland Publishing Co.
  3. Jaynes, E.T. (2007). Probability theory : the logic of science (5. print. ed.). Cambridge [u.a.]: Cambridge Univ. Press. p. 172. ISBN 978-0-521-59271-0.
  4. Ferguson, Thomas S (1996). A course in large sample theory. Chapman & Hall. ISBN 0-412-04371-8.
  5. 1 2 Le Cam, Lucien (1986). Asymptotic methods in statistical decision theory. Springer-Verlag. ISBN 0-387-96307-3.
  6. Ferguson, Thomas S. (1982). "An inconsistent maximum likelihood estimate". Journal of the American Statistical Association. 77 (380): 831–834. doi:10.1080/01621459.1982.10477894. JSTOR 2287314.
  7. Lehmann, E.L.; Casella, G. (1998). Theory of Point Estimation, 2nd ed. Springer. ISBN 0-387-98502-6.

Bibliography

This article is issued from Wikipedia - version of the 11/18/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.