American wire gauge

"AWG" redirects here. For other uses, see AWG (disambiguation).

American wire gauge (AWG), also known as the Brown & Sharpe wire gauge, is a standardized wire gauge system used since 1857 predominantly in North America for the diameters of round, solid, nonferrous, electrically conducting wire. Dimensions of the wires are given in ASTM standard B 258.[1] The cross-sectional area of each gauge is an important factor for determining its current-carrying capacity.

Increasing gauge numbers denote decreasing wire diameters, which is similar to many other non-metric gauging systems such as SWG. This gauge system originated in the number of drawing operations used to produce a given gauge of wire. Very fine wire (for example, 30 gauge) required more passes through the drawing dies than 0 gauge wire did. Manufacturers of wire formerly had proprietary wire gauge systems; the development of standardized wire gauges rationalized selection of wire for a particular purpose.

The AWG tables are for a single, solid, round conductor. The AWG of a stranded wire is determined by the cross-sectional area of the equivalent solid conductor. Because there are also small gaps between the strands, a stranded wire will always have a slightly larger overall diameter than a solid wire with the same AWG.

AWG is also commonly used to specify body piercing jewelry sizes (especially smaller sizes), even when the material is not metallic.[2]

Formulae

By definition, No. 36 AWG is 0.005 inches in diameter, and No. 0000 is 0.46 inches in diameter. The ratio of these diameters is 1:92, and there are 40 gauge sizes from No. 36 to No. 0000, or 39 steps. Because each successive gauge number increases cross sectional area by a constant multiple, diameters vary geometrically. Any two successive gauges (e.g., A & B ) have diameters in the ratio (dia. B ÷ dia. A) of (approximately 1.12293), while for gauges two steps apart (e.g., A, B, & C), the ratio of the C to A is about 1.122932 = 1.26098. The diameter of a No. n AWG wire is determined, for gauges smaller than 00 (36 to 0), according to the following formula:

(see below for gauges larger than No. 0 (i.e., No. 00, No. 000, No. 0000 ).)

or equivalently

The gauge can be calculated from the diameter using [3]

and the cross-section area is

,

The standard ASTM B258 - 02(2008) Standard Specification for Standard Nominal Diameters and Cross-Sectional Areas of AWG Sizes of Solid Round Wires Used as Electrical Conductors defines the ratio between successive sizes to be the 39th root of 92, or approximately 1.1229322.[4] ASTM B 258-02 also dictates that wire diameters should be tabulated with no more than 4 significant figures, with a resolution of no more than 0.0001 inches (0.1 mils) for wires larger than No. 44 AWG, and 0.00001 inches (0.01 mils) for wires No. 45 AWG and smaller.

Sizes with multiple zeros are successively larger than No. 0 and can be denoted using "number of zeros/0", for example 4/0 for 0000. For an m/0 AWG wire, use n = −(m − 1) = 1 − m in the above formulas. For instance, for No. 0000 or 4/0, use n = −3.

Rules of thumb

The sixth power of is very close to 2,[5] which leads to the following rules of thumb:

Tables of AWG wire sizes

The table below shows various data including both the resistance of the various wire gauges and the allowable current (ampacity) based on plastic insulation. The diameter information in the table applies to solid wires. Stranded wires are calculated by calculating the equivalent cross sectional copper area. Fusing current (melting wire) is estimated based on 25 °C ambient temperature. The table below assumes DC, or AC frequencies equal to or less than 60 Hz, and does not take skin effect into account. Turns of wire is an upper limit for wire with no insulation.

AWG Diameter Turns of wire,
without insulation
Area Copper wire
Resistance/length[6] Ampacity,[7] at 20 °C insulation material
temperature rating, or 16 AWG and smaller
for single unbundled wires in equipment:[8]
Fusing current[9][10]
60 °C 75 °C 90 °C Preece[11][12][13][14] Onderdonk[15][14]
(in) (mm) (per in) (per cm) (kcmil) (mm2) (mΩ/m[lower-alpha 1]) (mΩ/ft[lower-alpha 2]) (A) ~10 s 1 s 32 ms
0000 (4/0) 0.4600[lower-alpha 3] 11.684[lower-alpha 3] 2.17 0.856 212 107 0.1608 0.04901 195 230 260 3.2 kA 33 kA 182 kA
000 (3/0) 0.4096 10.405 2.44 0.961 168 85.0 0.2028 0.06180 165 200 225 2.7 kA 26 kA 144 kA
00 (2/0) 0.3648 9.266 2.74 1.08 133 67.4 0.2557 0.07793 145 175 195 2.3 kA 21 kA 115 kA
0 (1/0) 0.3249 8.251 3.08 1.21 106 53.5 0.3224 0.09827 125 150 170 1.9 kA 16 kA 91 kA
1 0.2893 7.348 3.46 1.36 83.7 42.4 0.4066 0.1239 110 130 145 1.6 kA 13 kA 72 kA
2 0.2576 6.544 3.88 1.53 66.4 33.6 0.5127 0.1563 95 115 130 1.3 kA 10.2 kA 57 kA
3 0.2294 5.827 4.36 1.72 52.6 26.7 0.6465 0.1970 85 100 115 1.1 kA 8.1 kA 45 kA
4 0.2043 5.189 4.89 1.93 41.7 21.2 0.8152 0.2485 70 85 95 946 A 6.4 kA 36 kA
5 0.1819 4.621 5.50 2.16 33.1 16.8 1.028 0.3133 795 A 5.1 kA 28 kA
6 0.1620 4.115 6.17 2.43 26.3 13.3 1.296 0.3951 55 65 75 668 A 4.0 kA 23 kA
7 0.1443 3.665 6.93 2.73 20.8 10.5 1.634 0.4982 561 A 3.2 kA 18 kA
8 0.1285 3.264 7.78 3.06 16.5 8.37 2.061 0.6282 40 50 55 472 A 2.5 kA 14 kA
9 0.1144 2.906 8.74 3.44 13.1 6.63 2.599 0.7921 396 A 2.0 kA 11 kA
10 0.1019 2.588 9.81 3.86 10.4 5.26 3.277 0.9989 30 35 40 333 A 1.6 kA 8.9 kA
11 0.0907 2.305 11.0 4.34 8.23 4.17 4.132 1.260 280 A 1.3 kA 7.1 kA
12 0.0808 2.053 12.4 4.87 6.53 3.31 5.211 1.588 20 25 30 235 A 1.0 kA 5.6 kA
13 0.0720 1.828 13.9 5.47 5.18 2.62 6.571 2.003 198 A 798 A 4.5 kA
14 0.0641 1.628 15.6 6.14 4.11 2.08 8.286 2.525 15 20 25 166 A 633 A 3.5 kA
15 0.0571 1.450 17.5 6.90 3.26 1.65 10.45 3.184 140 A 502 A 2.8 kA
16 0.0508 1.291 19.7 7.75 2.58 1.31 13.17 4.016 22*free air 13*enclosed 18 117 A 398 A 2.2 kA
17 0.0453 1.150 22.1 8.70 2.05 1.04 16.61 5.064 99 A 316 A 1.8 kA
18 0.0403 1.024 24.8 9.77 1.62 0.823 20.95 6.385 10 14 16 83 A 250 A 1.4 kA
19 0.0359 0.912 27.9 11.0 1.29 0.653 26.42 8.051 70 A 198 A 1.1 kA
20 0.0320 0.812 31.3 12.3 1.02 0.518 33.31 10.15 11 7.5 58.5 A 158 A 882 A
21 0.0285 0.723 35.1 13.8 0.810 0.410 42.00 12.80 49 A 125 A 700 A
22 0.0253 0.644 39.5 15.5 0.642 0.326 52.96 16.14 7 5 41 A 99 A 551 A
23 0.0226 0.573 44.3 17.4 0.509 0.258 66.79 20.36 35 A 79 A 440 A
24 0.0201 0.511 49.7 19.6 0.404 0.205 84.22 25.67 3.5 2.1 29 A 62 A 348 A
25 0.0179 0.455 55.9 22.0 0.320 0.162 106.2 32.37 24 A 49 A 276 A
26 0.0159 0.405 62.7 24.7 0.254 0.129 133.9 40.81 2.2 1.3 20 A 39 A 218 A
27 0.0142 0.361 70.4 27.7 0.202 0.102 168.9 51.47 17 A 31 A 174 A
28 0.0126 0.321 79.1 31.1 0.160 0.0810 212.9 64.90 1.4 0.85 14 A 24 A 137 A
29 0.0113 0.286 88.8 35.0 0.127 0.0642 268.5 81.84 12 A 20 A 110 A
30 0.0100 0.255 99.7 39.3 0.101 0.0509 338.6 103.2 0.86 0.52 10 A 15 A 86 A
31 0.00893 0.227 112 44.1 0.0797 0.0404 426.9 130.1 9 A 12 A 69 A
32 0.00795 0.202 126 49.5 0.0632 0.0320 538.3 164.1 0.53 0.3 7 A 10 A 54 A
33 0.00708 0.180 141 55.6 0.0501 0.0254 678.8 206.9 6 A 7.7 A 43 A
34 0.00630 0.160 159 62.4 0.0398 0.0201 856.0 260.9 0.3 0.180 5 A 6.1 A 34 A
35 0.00561 0.143 178 70.1 0.0315 0.0160 1079 329.0 4 A 4.8 A 27 A
36 0.00500 0.127[lower-alpha 3] 200[lower-alpha 3] 78.7 0.0250 0.0127 1361 414.8 4 A 3.9 A 22 A
37 0.00445 0.113 225 88.4 0.0198 0.0100 1716 523.1 3 A 3.1 A 17 A
38 0.00397 0.101 252 99.3 0.0157 0.00797 2164 659.6 3 A 2.4 A 14 A
39 0.00353 0.0897 283 111 0.0125 0.00632 2729 831.8 2 A 1.9 A 11 A
40 0.00314 0.0799 318 125 0.00989 0.00501 3441 1049 1 A 1.5 A 8.5 A
  1. or, equivalently, Ω/km
  2. or, equivalently, Ω/kft
  3. 1 2 3 4 Exactly, by definition

In the North American electrical industry, conductors larger than 4/0 AWG are generally identified by the area in thousands of circular mils (kcmil), where 1 kcmil = 0.5067 mm2. The next wire size larger than 4/0 has a cross section of 250 kcmil. A circular mil is the area of a wire one mil in diameter. One million circular mils is the area of a circle with 1000 mil (1 inch) diameter. An older abbreviation for one thousand circular mils is MCM.

Stranded wire AWG sizes

AWG gauges are also used to describe stranded wire. In this case, it describes a wire which is equal in cross-sectional area to the total of all the cross-sectional areas of the individual strands; the gaps between strands are not counted. When made with circular strands, these gaps occupy about 10% of the wire area, thus requiring a wire about 5% thicker than equivalent solid wire.

Stranded wires are specified with three numbers, the overall AWG size, the number of strands, and the AWG size of a strand. The number of strands and the AWG of a strand are separated by a slash. For example, a 22 AWG 7/30 stranded wire is a 22 AWG wire made from seven strands of 30 AWG wire.

Nomenclature and abbreviations in electrical distribution

Alternative ways are commonly used in the electrical industry to specify wire sizes as AWG.

The industry also bundles common wire for use in mains electricity distribution in homes and businesses, identifying a bundle's wire size followed by the number of wires in the bundle. The most common type of distribution cable, NM-B, is generally implied:

14/3 and 12/3 cables are also available, used mainly between three-way (two-location) switches, and to have separate wall controls for ceiling fans and their attached light fixtures, or to have one half of a duplex outlet switched and the other always on.

12/2 and 14/2 can also be used for the rare 240-volt-only 15- or 20-amp plug by clearly marking the white wire red, since there is no neutral wire. Two conductor cable is available with black and red conductors only for this purpose; the outer sheath is likewise red.

277/480-volt cable is identical to 120/240, except that neutral is grey and hot is yellow (plus an optional orange, used as the red is). The higher voltage, used only in large non-residential buildings, allows more than twice as much electrical power (in watts) to be drawn through the same gauge of wire.

UF-B cable is "underground feeder" cable, which regardless of wire gauge has a solid waterproof grey sheath completely surrounding and filling the space between the conductors, which still have their individual colors. Other types of armored or metallic cable (types AC and MC) have an aluminum casing that may be used as a ground conductor, for which it is not necessary to calculate an equivalent wire gauge.

All new cables are marked as being "with ground" or "w/gnd", since installation of ungrounded cables have been prohibited by electrical codes for decades. The ground wire is typically the same gauge as the others, despite not being intended to carry large amounts of current for more than a few seconds in the event of a short circuit.

Table lamp wire is typically #18, while extension cords are #16, with #14 common on cords grounded for outdoor use, and #12 available. Mini Christmas lights were mostly #24 through 1997, when that gauge was arbitrarily de-rated from 3 to 2.5 amps, preventing manufacturers from getting UL certification for the same products which had already been approved for more than two decades. They were forced to use the formerly heavy-duty standard of #22 wire (itself de-rated from 5 to 4 amps), plus thicker insulation, which in turn caused them to shortchange customers by drastically shortening the light socket spacing and usable length of sets. This change also made light strings stiff and unsightly. Heavy-duty mini lights are now 20 AWG, with larger screw-in bulbs having sockets on 18 AWG lamp wire.

Pronunciation

AWG is colloquially referred to as gauge and the zeros in large wire sizes are referred to as aught /ˈɔːt/. Wire sized 1 AWG is referred to as "one gauge" or "No. 1" wire; similarly, smaller diameters are pronounced "x gauge" or "No. X" wire, where x is the positive integer AWG number. Consecutive AWG wire sizes larger than No. 1 wire are designated by the number of zeros:

and so on.

See also

References

  1. "ASTM B258 - 14 Standard Specification for Standard Nominal Diameters and Cross-Sectional Areas of AWG Sizes of Solid Round Wires Used as Electrical Conductors". West Conshohocken: ASTM International. Archived from the original on 22 July 2014. Retrieved 22 March 2015.(subscription required)
  2. SteelNavel.com Body Piercing Jewelry Size Reference — illustrating the different ways that size is measured on different kinds of jewelry
  3. The logarithm to the base 92 can be computed using any other logarithm, such as common or natural logarithm, using log92x = (log x)/(log 92).
  4. ASTM Standard B 258-02, page 4
  5. The result is roughly 2.0050, or one-quarter of one percent higher than 2
  6. Figure for solid copper wire at 68 °F, (Not in accordance to NEC Codebook 2014 Ch. 9, Table 8) computed based on 100% IACS conductivity of 58.0 MS/m, which agrees with multiple sources: High-purity oxygen-free copper can achieve up to 101.5% IACS conductivity; e.g., the Kanthal conductive alloys data sheet lists slightly lower resistances than this table.
  7. NFPA 70 National Electrical Code 2014 Edition. Table 310.15(B)(16) (formerly Table 310.16) page 70-161, "Allowable ampacities of insulated conductors rated 0 through 2000 volts, 60°C through 90°C, not more than three current-carrying conductors in raceway, cable, or earth (directly buried) based on ambient temperature of 30°C." Extracts from NFPA 70 do not represent the full position of NFPA and the original complete Code must be consulted. In particular, the maximum permissible overcurrent protection devices may set a lower limit.
  8. Reference Data for Engineers: Radio, Electronics, Computer and Communications 7th Ed
  9. Computed using equations from H. Wayne Beaty; Donald G. Fink, eds. (2007), The Standard Handbook for Electrical Engineers (15th ed.), McGraw Hill, pp. 4–25, ISBN 0-07-144146-8
  10. Douglas Brooks (December 1998), "Fusing Current: When Traces Melt Without a Trace" (PDF), Printed Circuit Design, 15 (12): 53
  11. W. H. Preece (1883), "On the Heating Effects of Electric Currents" (PDF), Proc. Royal Society (36): 464–471
  12. W. H. Preece (1887), "On the Heating Effects of Electric Currents" (PDF), Proc. Royal Society, II (43): 280–295
  13. W. H. Preece (1888), "On the Heating Effects of Electric Currents" (PDF), Proc. Royal Society, III (44): 109–111
  14. 1 2 Douglas G, Brooks, Ph.D. and Johannes Adam, Ph.D. (29 June 2015), "Who Were Preece and Onderdonk?", Printed Circuit Design and Fab
  15. E. R. Stauffacher, (June 1928), "Short-time Current Carrying Capacity of Copper Wire" (PDF), General Electric Review, 31 (6)

Further reading

This article is issued from Wikipedia - version of the 11/26/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.