Special classes of semigroups
In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ab = ba for all elements a and b in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality. Members of the class of Brandt semigroups are required to satisfy not just one condition but a set of additional properties. A large variety of special classes of semigroups have been defined though not all of them have been studied equally intensively.
In the algebraic theory of semigroups, in constructing special classes, attention is focused only on those properties, restrictions and conditions which can be expressed in terms of the binary operations in the semigroups and occasionally on the cardinality and similar properties of subsets of the underlying set. The underlying sets are not assumed to carry any other mathematical structures like order or topology.
As in any algebraic theory, one of the main problems of the theory of semigroups is the classification of all semigroups and a complete description of their structure. In the case of semigroups, since the binary operation is required to satisfy only the associativity property the problem of classification is considered extremely difficult. Descriptions of structures have been obtained for certain special classes of semigroups. For example the structure of the sets of idempotents of regular semigroups is completely known. Structure descriptions are presented in terms of better known types of semigroups. The best known type of semigroup is the group.
A (necessarily incomplete) list of various special classes of semigroups is presented below. To the extent possible the defining properties are formulated in terms of the binary operations in the semigroups. The references point to the locations from where the defining properties are sourced.
Notations
In describing the defining properties of the various special classes of semigroups, the following notational conventions are adopted.
Notation | Meaning |
---|---|
S | Arbitrary semigroup |
E | Set of idempotents in S |
G | Group of units in S |
X | Arbitrary set |
a, b, c | Arbitrary elements of S |
x, y, z | Specific elements of S |
e, f. g | Arbitrary elements of E |
h | Specific element of E |
l, m, n | Arbitrary positive integers |
j, k | Specific positive integers |
0 | Zero element of S |
1 | Identity element of S |
S1 | S if 1 ∈ S; S ∪ { 1 } if 1 ∉ S |
L, R, H, D, J | Green's relations |
La, Ra, Ha, Da, Ja | Green classes containing a |
a ≤L b a ≤R b a ≤H b |
S1a ⊆ S1b aS1 ⊆ bS1 S1a ⊆ S1b and aS1 ⊆ bS1 |
List of special classes of semigroups
Terminology | Defining property | Reference(s) |
---|---|---|
Finite semigroup |
|
|
Empty semigroup |
|
|
Trivial semigroup |
|
|
Monoid |
|
Gril p. 3 |
Band (Idempotent semigroup) |
|
C&P p. 4 |
Semilattice |
|
C&P p. 24 |
Commutative semigroup |
|
C&P p. 3 |
Archimedean commutative semigroup |
|
C&P p. 131 |
Nowhere commutative semigroup |
|
C&P p. 26 |
Left weakly commutative |
|
Nagy p. 59 |
Right weakly commutative |
|
Nagy p. 59 |
Weakly commutative |
|
Nagy p. 59 |
Conditionally commutative semigroup |
|
Nagy p. 77 |
R-commutative semigroup |
|
Nagy p. 69–71 |
RC-commutative semigroup |
|
Nagy p. 93–107 |
L-commutative semigroup |
|
Nagy p. 69–71 |
LC-commutative semigroup |
|
Nagy p. 93–107 |
H-commutative semigroup |
|
Nagy p. 69–71 |
Quasi-commutative semigroup |
|
Nagy p. 109 |
Right commutative semigroup |
|
Nagy p. 137 |
Left commutative semigroup |
|
Nagy p. 137 |
Externally commutative semigroup |
|
Nagy p. 175 |
Medial semigroup |
|
Nagy p. 119 |
E-k semigroup (k fixed) |
|
Nagy p. 183 |
Exponential semigroup |
|
Nagy p. 183 |
WE-k semigroup (k fixed) |
|
Nagy p. 199 |
Weakly exponential semigroup |
|
Nagy p. 215 |
Cancellative semigroup |
|
C&P p. 3 |
Right cancellative semigroup |
|
C&P p. 3 |
Left cancellative semigroup |
|
C&P p. 3 |
E-inversive semigroup |
|
C&P p. 98 |
Regular semigroup |
|
C&P p. 26 |
Intra-regular semigroup |
|
C&P p. 121 |
Left regular semigroup |
|
C&P p. 121 |
Right regular semigroup |
|
C&P p. 121 |
Completely regular semigroup |
|
Gril p. 75 |
(inverse) Clifford semigroup |
|
Petrich p. 65 |
k-regular semigroup (k fixed) |
|
Hari |
Eventually regular semigroup (π-regular semigroup, Quasi regular semigroup) |
|
Edwa Shum Higg p. 49 |
Quasi-periodic semigroup, epigroup, group-bound semigroup, completely (or strongly) π-regular semigroup, and many other; see Kela for a list) |
|
Kela Gril p. 110 Higg p. 4 |
Primitive semigroup |
|
C&P p. 26 |
Unit regular semigroup |
|
Tvm |
Strongly unit regular semigroup |
|
Tvm |
Orthodox semigroup |
|
Gril p. 57 Howi p. 226 |
Inverse semigroup |
|
C&P p. 28 |
Left inverse semigroup (R-unipotent) |
|
Gril p. 382 |
Right inverse semigroup (L-unipotent) |
|
Gril p. 382 |
Locally inverse semigroup (Pseudoinverse semigroup) |
|
Gril p. 352 |
M-inversive semigroup |
|
C&P p. 98 |
Pseudoinverse semigroup (Locally inverse semigroup) |
|
Gril p. 352 |
Abundant semigroups |
|
Chen |
Rpp-semigroup (Right principal projective semigroup) |
|
Shum |
Lpp-semigroup (Left principal projective semigroup) |
|
Shum |
Null semigroup (Zero semigroup) |
|
C&P p. 4 |
Zero semigroup (Null semigroup) |
|
C&P p. 4 |
Left zero semigroup |
|
C&P p. 4 |
Right zero semigroup |
|
C&P p. 4 |
Unipotent semigroup |
|
C&P p. 21 |
Left reductive semigroup |
|
C&P p. 9 |
Right reductive semigroup |
|
C&P p. 4 |
Reductive semigroup |
|
C&P p. 4 |
Separative semigroup |
|
C&P p. 130–131 |
Reversible semigroup |
|
C&P p. 34 |
Right reversible semigroup |
|
C&P p. 34 |
Left reversible semigroup |
|
C&P p. 34 |
Aperiodic semigroup |
|
KKM p. 29 |
ω-semigroup |
|
Gril p. 233–238 |
Left Clifford semigroup (LC-semigroup) |
|
Shum |
Right Clifford semigroup (RC-semigroup) |
|
Shum |
LC-semigroup (Left Clifford semigroup) |
|
Shum |
RC-semigroup (Right Clifford semigroup) |
|
Shum |
Orthogroup |
|
Shum |
Complete commutative semigroup |
|
Gril p. 110 |
Nilsemigroup |
|
Gril p. 99 |
Elementary semigroup |
|
Gril p. 111 |
E-unitary semigroup |
|
Gril p. 245 |
Finitely presented semigroup |
|
Gril p. 134 |
Fundamental semigroup |
|
Gril p. 88 |
Idempotent generated semigroup |
|
Gril p. 328 |
Locally finite semigroup |
|
Gril p. 161 |
N-semigroup |
|
Gril p. 100 |
L-unipotent semigroup (Right inverse semigroup) |
|
Gril p. 362 |
R-unipotent semigroup (Left inverse semigroup) |
|
Gril p. 362 |
Left simple semigroup |
|
Gril p. 57 |
Right simple semigroup |
|
Gril p. 57 |
Subelementary semigroup |
|
Gril p. 134 |
Symmetric semigroup (Full transformation semigroup) |
|
C&P p. 2 |
Weakly reductive semigroup |
|
C&P p. 11 |
Right unambiguous semigroup |
|
Gril p. 170 |
Left unambiguous semigroup |
|
Gril p. 170 |
Unambiguous semigroup |
|
Gril p. 170 |
Left 0-unambiguous |
|
Gril p. 178 |
Right 0-unambiguous |
|
Gril p. 178 |
0-unambiguous semigroup |
|
Gril p. 178 |
Left Putcha semigroup |
|
Nagy p. 35 |
Right Putcha semigroup |
|
Nagy p. 35 |
Putcha semigroup |
|
Nagy p. 35 |
Bisimple semigroup (D-simple semigroup) |
|
C&P p. 49 |
0-bisimple semigroup |
|
C&P p. 76 |
Completely simple semigroup |
|
C&P p. 76 |
Completely 0-simple semigroup |
|
C&P p. 76 |
D-simple semigroup (Bisimple semigroup) |
|
C&P p. 49 |
Semisimple semigroup |
|
C&P p. 71–75 |
Simple semigroup |
|
C&P p. 5 Higg p. 16 |
0-simple semigroup |
|
C&P p. 67 |
Left 0-simple semigroup |
|
C&P p. 67 |
Right 0-simple semigroup |
|
C&P p. 67 |
Cyclic semigroup (Monogenic semigroup) |
|
C&P p. 19 |
Monogenic semigroup (Cyclic semigroup) |
|
C&P p. 19 |
Periodic semigroup |
|
C&P p. 20 |
Bicyclic semigroup |
|
C&P p. 43–46 |
Full transformation semigroup TX (Symmetric semigroup) |
|
C&P p. 2 |
Rectangular semigroup |
|
C&P p. 97 |
Symmetric inverse semigroup IX |
|
C&P p. 29 |
Brandt semigroup |
|
C&P p. 101 |
Free semigroup FX |
|
Gril p. 18 |
Rees matrix semigroup |
|
C&P p.88 |
Semigroup of linear transformations |
|
C&P p.57 |
Semigroup of binary relations BX |
|
C&P p.13 |
Numerical semigroup |
|
Delg |
Semigroup with involution (*-semigroup) |
|
Howi |
*-semigroup (Semigroup with involution) |
|
Howi |
Baer–Levi semigroup |
|
C&P II Ch.8 |
U-semigroup |
|
Howi p.102 |
I-semigroup |
|
Howi p.102 |
Semiband |
|
Howi p.230 |
Group |
|
References
[C&P] | A H Clifford, G B Preston (1964). The Algebraic Theory of Semigroups Vol. I (Second Edition). American Mathematical Society. ISBN 978-0-8218-0272-4 |
[C&P II] | A H Clifford, G B Preston (1967). The Algebraic Theory of Semigroups Vol. II (Second Edition). American Mathematical Society. ISBN 0-8218-0272-0 |
[Chen] | Hui Chen (2006), "Construction of a kind of abundant semigroups", Mathematical Communications (11), 165–171 (Accessed on 25 April 2009) |
[Delg] | M Delgado, et al., Numerical semigroups, (Accessed on 27 April 2009) |
[Edwa] | P M Edwards (1983), "Eventually regular semigroups", Bulletin of Australian Mathematical Society 28, 23–38 |
[Gril] | P A Grillet (1995). Semigroups. CRC Press. ISBN 978-0-8247-9662-4 |
[Hari] | K S Harinath (1979), "Some results on k-regular semigroups", Indian Journal of Pure and Applied Mathematics 10(11), 1422–1431 |
[Howi] | J M Howie (1995), Fundamentals of Semigroup Theory, Oxford University Press |
[Nagy] | Attila Nagy (2001). Special Classes of Semigroups. Springer. ISBN 978-0-7923-6890-8 |
[Pet] | M Petrich, N R Reilly (1999). Completely regular semigroups. John Wiley & Sons. ISBN 978-0-471-19571-9 |
[Shum] | K P Shum "Rpp semigroups, its generalizations and special subclasses" in Advances in Algebra and Combinatorics edited by K P Shum et al. (2008), World Scientific, ISBN 981-279-000-4 (pp. 303–334) |
[Tvm] | Proceedings of the International Symposium on Theory of Regular Semigroups and Applications, University of Kerala, Thiruvananthapuram, India, 1986 |
[Kela] | A. V. Kelarev, Applications of epigroups to graded ring theory, Semigroup Forum, Volume 50, Number 1 (1995), 327-350 doi:10.1007/BF02573530 |
[KKM] | Mati Kilp, Ulrich Knauer, Alexander V. Mikhalev (2000), Monoids, Acts and Categories: with Applications to Wreath Products and Graphs, Expositions in Mathematics 29, Walter de Gruyter, Berlin, ISBN 978-3-11-015248-7. |
[Higg] | Peter M. Higgins (1992). Techniques of semigroup theory. Oxford University Press. ISBN 978-0-19-853577-5. |