# Harmonic

The nodes of a vibrating string are harmonics.
Two different notations of natural harmonics on the cello. First as sounded (more common), then as fingered (easier to sightread).

The term harmonic in its strictest sense describes any member of the harmonic series. The term is employed in various disciplines, including music and acoustics, electronic power transmission, radio technology, etc. It is typically applied to repeating signals, such as sinusoidal waves. A harmonic of such a wave is a wave with a frequency that is a positive integer multiple of the frequency of the original wave, known as the fundamental frequency. The original wave is also called 1st harmonic, the following harmonics are known as higher harmonics. As all harmonics are periodic at the fundamental frequency, the sum of harmonics is also periodic at that frequency. For example, if the fundamental frequency is 50 Hz, a common AC power supply frequency, the frequencies of the first three higher harmonics are 100 Hz (2nd harmonic), 150 Hz (3rd harmonic), 200 Hz (4th harmonic) and any addition of waves with these frequencies is periodic at 50 Hz.

## Characteristics

Most acoustic instruments emit complex tones containing many individual partials (component simple tones or sinusoidal waves), but the untrained human ear typically does not perceive those partials as separate phenomena. Rather, a musical note is perceived as one sound, the quality or timbre of that sound being a result of the relative strengths of the individual partials.

Many acoustic oscillators, such as the human voice or a bowed violin string, produce complex tones that are more or less periodic, and thus are composed of partials that are near matches to integer multiples of the fundamental frequency and therefore resemble the ideal harmonics and are called "harmonic partials" or simply "harmonics" for convenience (although it's not strictly accurate to call a partial a harmonic, the first being real and the second being ideal). Oscillators that produce harmonic partials behave somewhat like 1-dimensional resonators, and are often long and thin, such as a guitar string or a column of air open at both ends (as with the modern orchestral transverse flute). Wind instruments whose air column is open at only one end, such as trumpets and clarinets, also produce partials resembling harmonics. However they only produce partials matching the odd harmonics, at least in theory. The reality of acoustic instruments is such that none of them behaves as perfectly as the somewhat simplified theoretical models would predict.

Partials whose frequencies are not integer multiples of the fundamental are referred to as inharmonic partials.

Some acoustic instruments emit a mix of harmonic and inharmonic partials but still produce an effect on the ear of having a definite fundamental pitch, such as pianos, strings plucked pizzicato, vibraphones, marimbas, and certain pure-sounding bells or chimes. Antique singing bowls are known for producing multiple harmonic partials or multiphonics. [1] [2]

Other oscillators, such as cymbals, drum heads, and other percussion instruments, naturally produce an abundance of inharmonic partials and do not imply any particular pitch, and therefore cannot be used melodically or harmonically in the same way other instruments can.

## Partials, overtones, and harmonics

An overtone is any partial higher than the lowest partial in a compound tone. The relative strengths and frequency relationships of the component partials determine the timbre of an instrument. The similarity between the terms overtone and partial sometimes leads to their being loosely used interchangeably in a musical context, but they are counted differently, leading to some possible confusion. In the special case of instrumental timbres whose component partials closely match a harmonic series (such as with most strings and winds) rather than being inharmonic partials (such as with most pitched percussion instruments), it is also convenient to call the component partials "harmonics" but not strictly correct (because harmonics are numbered the same even when missing, while partials and overtones are only counted when present). This chart demonstrates how the three types of names (partial, overtone, and harmonic) are counted (assuming that the harmonics are present):

Frequency Order Name 1 Name 2 Name 3 Wave Representation Molecular Representation
1 · f =   440 Hz n = 1 1st partial fundamental tone 1st harmonic
2 · f =   880 Hz n = 2 2nd partial 1st overtone 2nd harmonic
3 · f = 1320 Hz n = 3 3rd partial 2nd overtone 3rd harmonic
4 · f = 1760 Hz n = 4 4th partial 3rd overtone 4th harmonic

In many musical instruments, it is possible to play the upper harmonics without the fundamental note being present. In a simple case (e.g., recorder) this has the effect of making the note go up in pitch by an octave, but in more complex cases many other pitch variations are obtained. In some cases it also changes the timbre of the note. This is part of the normal method of obtaining higher notes in wind instruments, where it is called overblowing. The extended technique of playing multiphonics also produces harmonics. On string instruments it is possible to produce very pure sounding notes, called harmonics or flageolets by string players, which have an eerie quality, as well as being high in pitch. Harmonics may be used to check at a unison the tuning of strings that are not tuned to the unison. For example, lightly fingering the node found halfway down the highest string of a cello produces the same pitch as lightly fingering the node 1/3 of the way down the second highest string. For the human voice see Overtone singing, which uses harmonics.

While it is true that electronically produced periodic tones (e.g. square waves or other non-sinusoidal waves) have "harmonics" that are whole number multiples of the fundamental frequency, practical instruments do not all have this characteristic. For example, higher "harmonics"' of piano notes are not true harmonics but are "overtones" and can be very sharp, i.e. a higher frequency than given by a pure harmonic series. This is especially true of instruments other than stringed or brass/woodwind ones, e.g., xylophone, drums, bells etc., where not all the overtones have a simple whole number ratio with the fundamental frequency.

The fundamental frequency is the reciprocal of the period of the periodic phenomenon.

## Harmonics on stringed instruments

Playing a harmonic on a string

The following table displays the stop points on a stringed instrument, such as the guitar (guitar harmonics), at which gentle touching of a string will force it into a harmonic mode when vibrated. String harmonics (flageolet tones) are described as having a "flutelike, silvery quality that can be highly effective as a special color <timbre>" when used and heard in orchestration.[3] It is unusual to encounter natural harmonics higher than the fifth partial on any stringed instrument except the double bass, on account of its much longer strings.[4]

Harmonic Stop note Sounded note relative to open string Cents above open string Cents reduced to one octave Audio
2 octave octave (P8) 1,200.0 0.0  Play
3 just perfect fifth P8 + just perfect fifth (P5) 1,902.0 702.0  Play
4 second octave 2P8 2,400.0 0.0  Play
5 just major third 2P8 + just major third (M3) 2,786.3 386.3  Play
6 just minor third 2P8 + P5 3,102.0 702.0
7 septimal minor third 2P8 + septimal minor seventh (m7) 3,368.8 968.8  Play
8 septimal major second 3P8 3,600.0 0.0
9 Pythagorean major second 3P8 + Pythagorean major second (M2) 3,803.9 203.9  Play
10 just minor whole tone 3P8 + just M3 3,986.3 386.3
11 greater undecimal neutral second 3P8 + lesser undecimal tritone 4,151.3 551.3  Play
12 lesser undecimal neutral second 3P8 + P5 4,302.0 702.0
13 tridecimal 2/3-tone 3P8 + tridecimal neutral sixth (n6) 4,440.5 840.5  Play
14 2/3-tone 3P8 + P5 + septimal minor third (m3) 4,568.8 968.8
15 septimal (or major) diatonic semitone 3P8 + just major seventh (M7) 4,688.3 1,088.3  Play
16 just (or minor) diatonic semitone 4P8 4,800.0 0.0

### Table

Table of harmonics of a stringed instrument with colored dots indicating which positions can be lightly fingered to generate just intervals up to the 7th harmonic

### Artificial harmonics

Although harmonics are most often used on open strings, occasionally a score will call for an artificial harmonic, produced by playing an overtone on a stopped string. As a performance technique, it is accomplished by using two fingers on the fingerboard, the first to shorten the string to the desired fundamental, with the second touching the node corresponding to the appropriate harmonic.

## Other information

Harmonics may be either used or considered as the basis of just intonation systems.

Composer Arnold Dreyblatt is able to bring out different harmonics on the single string of his modified double bass by slightly altering his unique bowing technique halfway between hitting and bowing the strings.

Composer Lawrence Ball uses harmonics to generate music electronically.