Cutting fluid

Thin-wall milling of aluminum using a water-based cutting fluid on the milling cutter.

Cutting fluid is a type of coolant and lubricant designed specifically for metalworking processes, such as machining and stamping. There are various kinds of cutting fluids, which include oils, oil-water emulsions, pastes, gels, aerosols (mists), and air or other gases. They may be made from petroleum distillates, animal fats, plant oils, water and air, or other raw ingredients. Depending on context and on which type of cutting fluid is being considered, it may be referred to as cutting fluid, cutting oil, cutting compound, coolant, or lubricant.

Most metalworking and machining processes can benefit from the use of cutting fluid, depending on workpiece material. Common exceptions to this are cast iron and brass, which may be machined dry (though this is not true of all brasses, and any machining of brass will likely benefit from the presence of a cutting fluid).[1]

The properties that are sought after in a good cutting fluid are the ability to:

Functions

Cooling

Metal cutting generates heat due to friction and energy lost deforming the material. The surrounding air has low thermal conductivity (conducts heat poorly) meaning it is a poor coolant. Ambient air cooling is sometimes adequate for light cuts and low duty cycles typical of maintenance, repair and operations (MRO) or hobbyist work. Production work requires heavy cutting over long time periods and typically produces more heat than air cooling can remove. Rather than pausing production while the tool cools, using liquid coolant removes significantly more heat more rapidly, and can also speed cutting and reduce friction and tool wear.

However, it is not just the tool which heats up but also the work surface. Excessive temperature in the tool or work surface can ruin the temper of both, soften either to the point of uselessness or failure, burn adjacent material, create unwanted thermal expansion or lead to unwanted chemical reactions such as oxidation.

Lubrication

Besides cooling, cutting fluids also aid the cutting process by lubricating the interface between the tool's cutting edge and the chip. By preventing friction at this interface, some of the heat generation is prevented. This lubrication also helps prevent the chips from being welded onto the tool, which would interfere with subsequent cutting.

Extreme pressure additives are often added to cutting fluids to further reduce tool wear.

Delivery methods

Every conceivable method of applying cutting fluid (e.g., flooding, spraying, dripping, misting, brushing) can be used, with the best choice depending on the application and the equipment available. For many metal cutting applications the ideal has long been high-pressure, high-volume pumping to force a stream of liquid (usually an oil-water emulsion) directly into the tool-chip interface, with walls around the machine to contain the splatter and a sump to catch, filter, and recirculate the fluid. This type of system is commonly employed, especially in manufacturing. It is often not a practical option for MRO or hobbyist metalcutting, where smaller, simpler machine tools are used. Fortunately it is also not necessary in those applications, where heavy cuts, aggressive speeds and feeds, and constant, all-day cutting are not vital.

As technology continually advances, the flooding paradigm is no longer always the clear winner. It has been complemented since the 2000s by new permutations of liquid, aerosol, and gas delivery, such as minimum quantity lubrication and through-the-tool-tip cryogenic cooling (detailed below).

Through-tool coolant systems, also known as through-spindle coolant systems, are systems plumbed to deliver coolant through passages inside the spindle and through the tool, directly to the cutting interface. Many of these are also high-pressure coolant systems, in which the operating pressure can be hundreds to several thousand psi (1 to 30 MPa)—pressures comparable to those used in hydraulic circuits. High-pressure through-spindle coolant systems require rotary unions that can withstand these pressures. Drill bits and endmills tailored for this use have small holes at the lips where the coolant shoots out. Various types of gun drills also use similar arrangements.

Types

Liquids

There are generally three types of liquids: mineral, semi-synthetic, and synthetic. Semi-synthetic and synthetic cutting fluids represent attempts to combine the best properties of oil with the best properties of water by suspending emulsified oil in a water base. These properties include: rust inhibition, tolerance of a wide range of water hardness (maintaining pH stability around 9 to 10), ability to work with many metals, resist thermal breakdown, and environmental safety.[2]

Water is a good conductor of heat but has drawbacks as a cutting fluid. It boils easily, promotes rusting of machine parts, and does not lubricate well. Therefore, other ingredients are necessary to create an optimal cutting fluid.

Mineral oils, which are petroleum-based, first saw use in cutting applications in the late 19th century. These vary from the thick, dark, sulfur-rich cutting oils used in heavy industry to light, clear oils.

Semi-synthetic coolants, also called soluble oil, are an emulsion or microemulsion of water with mineral oil. These began to see use in the 1930s. A typical CNC machine tool usually uses emulsified coolant, which consists of a small amount of oil emulsified into a larger amount of water through the use of a detergent.

Synthetic coolants originated in the late 1950s and are usually water-based.

The official technique to measure oil concentration in cutting fluid samples is manual titration:[3] 100ml of the fluid under test is titrated with a 0.5M HCl solution to an endpoint of pH 4 and the volume of titrant used to reach the endpoint is used to calculate the oil concentration. This technique is accurate and not affected by fluid contamination, but needs to be performed by trained personnel in a laboratory environment. A hand-held refractometer is the industrial standard used to determine the mix ratio of water-soluble coolants[4] that estimates oil concentration from the sample refractive index measured in the Brix scale. The refractometer allows for in situ measurements of oil concentration within industrial plants. However, contamination of the sample reduces the accuracy of the measure. Other techniques are used to measure the oil concentration in cutting fluids, such as measure of the fluid viscosity,[5] density[6] and ultrasound speed.[7] Other test equipment is used to determine such properties as acidity and conductivity.

Others include:

Pastes or gels

Cutting fluid may also take the form of a paste or gel when used for some applications, in particular hand operations such as drilling and tapping. In sawing metal with a bandsaw, it is common to periodically run a stick of paste against the blade. This product is similar in form factor to lipstick or beeswax. It comes in a cardboard tube, which gets slowly consumed with each application.

Aerosols (mists)

Some cutting fluids are used in aerosol (mist) form (air with tiny droplets of liquid scattered throughout). The main problems with mists have been that they are rather bad for the workers, who have to breathe the surrounding mist-tainted air, and that they sometimes don't even work very well. Both of those problems come from the imprecise delivery that often puts the mist everywhere and all the time except at the cutting interface, during the cut—the one place and time where it's wanted. However, a newer form of aerosol delivery, MQL (minimum quantity of lubricant),[8][9] avoids both of those problems. The delivery of the aerosol is directly through the flutes of the tool (it arrives directly through or around the insert itself—an ideal type of cutting fluid delivery that traditionally has been unavailable outside of a few contexts such as gun drilling or expensive, state-of-the-art liquid delivery in production milling). MQL's aerosol is delivered in such a precisely targeted way (with respect to both location and timing) that the net effect seems almost like dry machining from the operators' perspective.[8][9] The chips generally seem like dry-machined chips, requiring no draining, and the air is so clean that machining cells can be stationed closer to inspection and assembly than before.[8][9] MQL doesn't provide much cooling in the sense of heat transfer, but its well-targeted lubricating action prevents some of the heat from being generated in the first place, which helps to explain its success.

CO2 Coolant

Carbon dioxide (chemical formula CO2) is also used as a coolant. In this application pressurized liquid CO2 is allowed to expand and this is accompanied by a drop in temperature, enough to cause a change of phase into a solid. These solid crystals are redirected into the cut zone by either external nozzles or through-the-spindle delivery, to provide temperature controlled cooling of the cutting tool and work piece.[10]

Air or other gases (e.g., nitrogen)

Ambient air, of course, was the original machining coolant. Compressed air, supplied through pipes and hoses from an air compressor and discharged from a nozzle aimed at the tool, is sometimes a useful coolant. The force of the decompressing air stream blows chips away, and the decompression itself has a slight degree of cooling action. The net result is that the heat of the machining cut is carried away a bit better than by ambient air alone. Sometimes liquids are added to the air stream to form a mist (mist coolant systems, described above).

Liquid nitrogen, supplied in pressurized steel bottles, is sometimes used in similar fashion. In this case, boiling is enough to provide a powerful refrigerating effect. For years this has been done (in limited applications) by flooding the work zone. Since 2005, this mode of coolant has been applied in a manner comparable to MQL (with through-the-spindle and through-the-tool-tip delivery). This refrigerates the body and tips of the tool to such a degree that it acts as a "thermal sponge", sucking up the heat from the tool–chip interface.[8] This new type of nitrogen cooling is still under patent. Tool life has been increased by a factor of 10 in the milling of tough metals such as titanium and inconel.[8]

Alternatively, using airflow combined with a quick evaporating substance (ex. alcohol, water etc.) can be used as an effective coolant when handling hot pieces that cannot be cooled by alternate methods.

Past practice

Safety concerns

Cutting fluids present some mechanisms for causing illness or injury in workers.[12] These mechanisms are based on the external (skin) or internal contact involved in machining work, including touching the parts and tooling; being splattered or splashed by the fluid; or having mist settle on the skin or enter the mouth and nose in the normal course of breathing.

The mechanisms include the chemical toxicity or physical irritating ability of:

The toxicity or irritating ability is usually not high, but it is sometimes enough to cause problems for the skin or for the tissues of the respiratory tract or alimentary tract (e.g., the mouth, larynx, esophagus, trachea, or lungs).

Some of the diagnoses that can result from the mechanisms explained above include irritant contact dermatitis; allergic contact dermatitis; occupational acne; tracheitis; esophagitis; bronchitis; asthma; allergy; hypersensitivity pneumonitis (HP); and worsening of pre-existing respiratory problems.

Safer cutting fluid formulations provide a resistance to tramp oils, allowing improved filtration separation without removing the base additive package. Room ventilation, splash guards on machines, and personal protective equipment (PPE) (such as safety glasses, respirator masks, and gloves) can mitigate hazards related to cutting fluids.[13]

Bacterial growth is predominant in petroleum-based cutting fluids. Tramp oil along with human hair or skin oil are some of the debris during cutting which accumulates and forms a layer on the top of the liquid; anaerobic bacteria proliferate due to a number of factors. An early sign of the need for replacement is the "Monday-morning smell" (due to lack of usage from Friday to Monday). Antiseptics are sometimes added to the fluid to kill bacteria. Such use must be balanced against whether the antiseptics will harm the cutting performance, workers' health, or the environment. Maintaining as low a fluid temperature as practical will slow the growth of microorganisms.[13]

The discussion above could leave a reader with the mistaken idea that cutting fluid is "often extremely dangerous". That would be an exaggeration. In reality, cutting fluid exposure is like many exposures in life, such as second-hand tobacco smoke; ethanol ingestion; paint and thinner fumes; kitchen or bakery smoke; contact with animal manure in farming or veterinary work, or contact with sewage in plumbing or sewer work. Such exposures only cause acute illness or injury in occasional cases where some situational factor was "out of normal bounds". Rather, the main health risk is that of chronic illness from long-term occupational exposure. Most machinists work around cutting fluids for years without adverse effects. They generally don't worry about casual contact, and they use PPE to minimize it. As for bacteria, fungi, and biocides, their risk can be slashed by two simple actions: regular fluid maintenance (skimming, filtering, concentration measuring) and timely fluid replacement. These actions typically pay for themselves because they also promote better machining (better surface finishes, longer tool life, tighter dimensional control).

Degradation, replacement, and disposal

Cutting fluids degrade over time due to contaminants entering the lubrication system. A common type of degradation is the formation of tramp oil, also known as sump oil, which is unwanted oil that has mixed with cutting fluid.[14] It originates as lubrication oil that seeps out from the slideways and washes into the coolant mixture, as the protective film with which a steel supplier coats bar stock to prevent rusting, or as hydraulic oil leaks. In extreme cases it can be seen as a film or skin on the surface of the coolant or as floating drops of oil.

Skimmers are used to separate the tramp oil from the coolant. These are typically slowly rotating vertical discs that are partially submerged below the coolant level in the main reservoir. As the disc rotates the tramp oil clings to each side of the disc to be scraped off by two wipers, before the disc passes back through the coolant. The wipers are in the form of a channel that then redirects the tramp oil to a container where it is collected for disposal. Floating weir skimmers are also used in these situation where temperature or the amount of oil on the water becomes excessive.

Since the introduction of CNC additives, the tramp oil in these systems can be managed more effectively through a continuous separation effect. The tramp oil accumulation separates from the aqueous or oil based coolant and can be easily removed with an absorbent.

Old, used cutting fluid must be disposed of when it is fetid or chemically degraded and has lost its usefulness. As with used motor oil or other wastes, its impact on the environment should be mitigated. Legislation and regulation specify how this mitigation should be achieved. Modern cutting fluid disposal involves techniques such as ultrafiltration using polymeric or ceramic membranes which concentrates the suspended and emulsified oil phase.

Chip handling and coolant management are interrelated. Over the decades they have been improved, to the point that many metalworking operations now use engineered solutions for the overall cycle of collecting, separating, and recycling both chips and coolant. For example, the chips are graded by size and type, tramp metals (such as bolts and scrap parts) are separated out, the coolant is centrifuged off the chips (which are then dried for further handling), and so on.[15]

References

Notes

  1. Frederick James Camm (1949). Newnes Engineer's Reference Book. George Newnes. p. 594.
  2. OSHA (1999). Metalworking Fluids: Safety and Health Best Practices Manual. Salt Lake City: U.S. Department of Labor, Occupational Safety and Health Administration.
  3. Byers, J.P. (2006). Metalworking Fluids. CRC Press.
  4. Fukuta, Mitsuhiro; Yanagisawa, Tadashi; Miyamura, Satoshi; Ogi, Yasuhiro (2004). "Concentration measurement of refrigerant/refrigeration oil mixture by refractive index". International Journal of Refrigeration. 27 (4): 346–352. doi:10.1016/j.ijrefrig.2003.12.007.
  5. Grossi, Marco; Riccò, Bruno (2016). "A portable electronic system for in-situ measurements of oil concentration in MetalWorking fluids". Sensors and Actuators A: Physical. 243: 7–14. doi:10.1016/j.sna.2016.03.006.
  6. Navarro de Andrade, Eduardo; Skowron, Eric; Goldschmidt, Victor W.; Groll, Eckhard A (1999). "Oil concentration in liquid refrigerants: in situ measurement". International Journal of Refrigeration. 22 (6): 499–508. doi:10.1016/S0140-7007(99)00008-0.
  7. Meyer, J.J.; Saiz Jabardo, J.M. (1994). "An ultrasonic device for measuring the oil concentration in flowing liquid refrigerant". 17 (7): 481–486. doi:10.1016/0140-7007(94)90009-4.
  8. 1 2 3 4 5 Zelinski, Peter (2006-08-28), "Toward more seamless MQL", Modern Machine Shop
  9. 1 2 3 Korn, Derek (2010-09-24), "The many ways Ford benefits from MQL", Modern Machine Shop
  10. "CO2 Cooling System reduces friction", Modern Machine Shop online, 2011-09-26
  11. Hartness 1915, pp. 153–155.
  12. NIOSH (2007). Health hazard evaluation and technical assistance report: HETA 005-0227-3049, Diamond Chain Company, Indianapolis, Indiana.
  13. 1 2 NIOSH (1998). Criteria for a recommended standard: occupational exposure to metalworking fluids. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. DHHS (NIOSH) Pub. No. 98-102.
  14. Smid 2010, p. 114.
  15. Willcutt_2015-06-18, Russ (2015-06-18), "When the chips are down", Modern Machine Shop.

Bibliography

External links

This article is issued from Wikipedia - version of the 10/27/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.