SPARC
Designer | Sun Microsystems (acquired by Oracle Corporation) |
---|---|
Bits | 64-bit (32 → 64) |
Introduced | 1987 (shipments) |
Version | V9 (1993) / OSA2015 |
Design | RISC |
Type | Register-Register |
Encoding | Fixed |
Branching | Condition code |
Endianness | Bi (Big → Bi) |
Page size | 8 KB (4 KB → 8 KB) |
Extensions | VIS 1.0, 2.0, 3.0, 4.0 |
Open | Yes, and royalty free |
Registers | |
General purpose | 31 (G0 = 0; non-global registers use register windows) |
Floating point | 32 (usable as 32 single-precision, 32 double-precision, or 16 quad-precision) |
The Scalable Processor Architecture (SPARC) is a reduced instruction set computing (RISC) instruction set architecture (ISA) originally developed by Sun Microsystems. Since the establishment of SPARC International, Inc. in 1989, the SPARC architecture has been developed by its members. SPARC International is also responsible for licensing and promoting the SPARC architecture, managing SPARC trademarks (including SPARC, which it owns), and providing conformance testing. SPARC International was intended to open the SPARC architecture to create a larger ecosystem; and SPARC has been licensed to several manufacturers, including Atmel, Cypress Semiconductor, Fujitsu, and Texas Instruments. As a result of SPARC International, SPARC is fully open, non-proprietary and royalty-free.
The first implementation of the original 32-bit SPARC architecture (SPARC V7) were initially designed and used in Sun's Sun-4 workstation and server systems, replacing their earlier Sun-3 systems based on the Motorola 68000 series of processors. Later, SPARC processors were used in SMP and CC-NUMA servers produced by Sun, Solbourne and Fujitsu, among others, and designed for 64-bit operation.
As of July 2016, the latest commercial high-end SPARC processors are Fujitsu's SPARC64 X+ (introduced in 2014 for its SPARC M10 server)[1] and SPARC64 XIfx (introduced in 2015 for its PRIMEHPC FX100 supercomputer); and Oracle's SPARC M7 (introduced in October 2015 for its high-end servers).
Features
The SPARC architecture was heavily influenced by the earlier RISC designs including the RISC I and II from the University of California, Berkeley and the IBM 801. These original RISC designs were minimalist, including as few features or op-codes as possible and aiming to execute instructions at a rate of almost one instruction per clock cycle. This made them similar to the MIPS architecture in many ways, including the lack of instructions such as multiply or divide. Another feature of SPARC influenced by this early RISC movement is the branch delay slot.
The SPARC processor usually contains as many as 160 general purpose registers. According to the "Oracle SPARC Architecture 2015" specification an "implementation may contain from 72 to 640 general-purpose 64-bit" registers.[2] At any point, only 32 of them are immediately visible to software – 8 are a set of global registers (one of which, g0, is hard-wired to zero, so only seven of them are usable as registers) and the other 24 are from the stack of registers. These 24 registers form what is called a register window, and at function call/return, this window is moved up and down the register stack. Each window has 8 local registers and shares 8 registers with each of the adjacent windows. The shared registers are used for passing function parameters and returning values, and the local registers are used for retaining local values across function calls.
The "Scalable" in SPARC comes from the fact that the SPARC specification allows implementations to scale from embedded processors up through large server processors, all sharing the same core (non-privileged) instruction set. One of the architectural parameters that can scale is the number of implemented register windows; the specification allows from three to 32 windows to be implemented, so the implementation can choose to implement all 32 to provide maximum call stack efficiency, or to implement only three to reduce cost and complexity of the design, or to implement some number between them. Other architectures that include similar register file features include Intel i960, IA-64, and AMD 29000.
The architecture has gone through several revisions. It gained hardware multiply and divide functionality in Version 8.[3][4] 64-bit (addressing and data) were added to the version 9 SPARC specification published in 1994.[5]
In SPARC Version 8, the floating point register file has 16 double precision registers. Each of them can be used as two single precision registers, providing a total of 32 single precision registers. An odd-even number pair of double precision registers can be used as a quad precision register, thus allowing 8 quad precision registers. SPARC Version 9 added 16 more double precision registers (which can also be accessed as 8 quad precision registers), but these additional registers can not be accessed as single precision registers. No SPARC CPU implements quad-precision operations in hardware as of 2004.[6]
Tagged add and subtract instructions perform adds and subtracts on values checking that the bottom two bits of both operands are 0 and reporting overflow if they are not. This can be useful in the implementation of the run time for ML, Lisp, and similar languages that might use a tagged integer format.
The endianness of the 32-bit SPARC V8 architecture is purely big-endian. The 64-bit SPARC V9 architecture uses big-endian instructions, but can access data in either big-endian or little-endian byte order, chosen either at the application instruction (load/store) level or at the memory page level (via an MMU setting). The latter is often used for accessing data from inherently little-endian devices, such as those on PCI buses.
History
There have been three major revisions of the architecture. The first published revision was the 32-bit SPARC Version 7 (V7) in 1986. SPARC Version 8 (V8), an enhanced SPARC architecture definition, was released in 1990. The main differences between V7 and V8 were the addition of integer multiply and divide instructions, and an upgrade from 80-bit "extended precision" floating-point arithmetic to 128-bit "quad-precision" arithmetic. SPARC V8 served as the basis for IEEE Standard 1754-1994, an IEEE standard for a 32-bit microprocessor architecture.
SPARC Version 9, the 64-bit SPARC architecture, was released by SPARC International in 1993. It was developed by the SPARC Architecture Committee consisting of Amdahl Corporation, Fujitsu, ICL, LSI Logic, Matsushita, Philips, Ross Technology, Sun Microsystems, and Texas Instruments. Newer specifications always remain compliant with the full SPARC V9 Level 1 specification.
In 2002, the SPARC Joint Programming Specification 1 (JPS1) was released by Fujitsu and Sun, describing processor functions which were identically implemented in the CPUs of both companies ("Commonality"). The first CPUs conforming to JPS1 were the UltraSPARC III by Sun and the SPARC64 V by Fujitsu. Functionalities which are not covered by JPS1 are documented for each processor in "Implementation Supplements".
At the end of 2003, JPS2 was released to support multicore CPUs. The first CPUs conforming to JPS2 were the UltraSPARC IV by Sun and the SPARC64 VI by Fujitsu.
In early 2006, Sun released an extended architecture specification, UltraSPARC Architecture 2005. This includes not only the non-privileged and most of the privileged portions of SPARC V9, but also all the architectural extensions developed through the processor generations of UltraSPARC III, IV, IV+ as well as CMT extensions starting with the UltraSPARC T1 implementation:
- the VIS 1 and VIS 2 instruction set extensions and the associated GSR register
- multiple levels of global registers, controlled by the GL register
- Sun's 64-bit MMU architecture
- privileged instructions ALLCLEAN, OTHERW, NORMALW, and INVALW
- access to the VER register is now hyperprivileged
- the SIR instruction is now hyperprivileged
In 2007, Sun released an updated specification, UltraSPARC Architecture 2007, to which the UltraSPARC T2 implementation complied.
In August 2012, Oracle Corporation made available a new specification, Oracle SPARC Architecture 2011, which besides the overall update of the reference, adds the VIS 3 instruction set extensions and hyperprivileged mode to the 2007 specification.[7]
In October 2015, Oracle released SPARC M7, the first processor based on the new Oracle SPARC Architecture 2015 specification.[2]-[8] This revision includes VIS 4 instruction set extensions.
SPARC architecture has provided continuous application binary compatibility from the first SPARC V7 implementation in 1987 through the Sun UltraSPARC Architecture implementations.
Among various implementations of SPARC, Sun's SuperSPARC and UltraSPARC-I were very popular, and were used as reference systems for SPEC CPU95 and CPU2000 benchmarks. The 296 MHz UltraSPARC-II is the reference system for the SPEC CPU2006 benchmark.
SPARC architecture licensees
The following organizations have licensed the SPARC architecture:
|
|
Implementations
Name (codename) | Model | Frequency (MHz) | Arch. version | Year | Total threads[note 1] | Process (nm) | Transistors (millions) | Die size (mm2) | IO pins | Power (W) | Voltage (V) | L1 Dcache (KB) | L1 Icache (KB) | L2 cache (KB) | L3 cache (KB) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPARC | (various), including MB86900[note 2] | 14.28–40 | V7 | 1987–1992 | 1×1=1 | 800–1300 | ~0.1–1.8 | -- | 160–256 | -- | -- | 0–128 (unified) | none | none | |
microSPARC I (Tsunami) | TI TMS390S10 | 40–50 | V8 | 1992 | 1×1=1 | 800 | 0.8 | 225? | 288 | 2.5 | 5 | 2 | 4 | none | none |
SuperSPARC I (Viking) | TI TMX390Z50 / Sun STP1020 | 33–60 | V8 | 1992 | 1×1=1 | 800 | 3.1 | -- | 293 | 14.3 | 5 | 16 | 20 | 0–2048 | none |
SPARClite | Fujitsu MB8683x | 66–108 | V8E | 1992 | 1×1=1 | -- | -- | -- | 144, 176 | -- | 2.5/3.3–5.0 V, 2.5–3.3 V | 1, 2, 8, 16 | 1, 2, 8, 16 | none | none |
hyperSPARC (Colorado 1) | Ross RT620A | 40–90 | V8 | 1993 | 1×1=1 | 500 | 1.5 | -- | -- | -- | 5? | 0 | 8 | 128–256 | none |
microSPARC II (Swift) | Fujitsu MB86904 / Sun STP1012 | 60–125 | V8 | 1994 | 1×1=1 | 500 | 2.3 | 233 | 321 | 5 | 3.3 | 8 | 16 | none | none |
hyperSPARC (Colorado 2) | Ross RT620B | 90–125 | V8 | 1994 | 1×1=1 | 400 | 1.5 | -- | -- | -- | 3.3 | 0 | 8 | 128–256 | none |
SuperSPARC II (Voyager) | Sun STP1021 | 75–90 | V8 | 1994 | 1×1=1 | 800 | 3.1 | 299 | -- | 16 | -- | 16 | 20 | 1024–2048 | none |
hyperSPARC (Colorado 3) | Ross RT620C | 125–166 | V8 | 1995 | 1×1=1 | 350 | 1.5 | -- | -- | -- | 3.3 | 0 | 8 | 512–1024 | none |
TurboSPARC | Fujitsu MB86907 | 160–180 | V8 | 1996 | 1×1=1 | 350 | 3.0 | 132 | 416 | 7 | 3.5 | 16 | 16 | 512 | none |
UltraSPARC (Spitfire) | Sun STP1030 | 143–167 | V9 | 1995 | 1×1=1 | 470 | 3.8 | 315 | 521 | 30[note 3] | 3.3 | 16 | 16 | 512–1024 | none |
UltraSPARC (Hornet) | Sun STP1030 | 200 | V9 | 1998 | 1×1=1 | 420 | 5.2 | 265 | 521 | -- | 3.3 | 16 | 16 | 512–1024 | none |
hyperSPARC (Colorado 4) | Ross RT620D | 180–200 | V8 | 1996 | 1×1=1 | 350 | 1.7 | -- | -- | -- | 3.3 | 16 | 16 | 512 | none |
SPARC64 | Fujitsu (HAL) | 101–118 | V9 | 1995 | 1×1=1 | 400 | -- | Multichip | 286 | 50 | 3.8 | 128 | 128 | -- | -- |
SPARC64 II | Fujitsu (HAL) | 141–161 | V9 | 1996 | 1×1=1 | 350 | -- | Multichip | 286 | 64 | 3.3 | 128 | 128 | -- | -- |
SPARC64 III | Fujitsu (HAL) MBCS70301 | 250–330 | V9 | 1998 | 1×1=1 | 240 | 17.6 | 240 | -- | -- | 2.5 | 64 | 64 | 8192 | -- |
UltraSPARC IIs (Blackbird) | Sun STP1031 | 250–400 | V9 | 1997 | 1×1=1 | 350 | 5.4 | 149 | 521 | 25[note 4] | 2.5 | 16 | 16 | 1024 or 4096 | none |
UltraSPARC IIs (Sapphire-Black) | Sun STP1032 / STP1034 | 360–480 | V9 | 1999 | 1×1=1 | 250 | 5.4 | 126 | 521 | 21[note 5] | 1.9 | 16 | 16 | 1024–8192 | none |
UltraSPARC IIi (Sabre) | Sun SME1040 | 270–360 | V9 | 1997 | 1×1=1 | 350 | 5.4 | 156 | 587 | 21 | 1.9 | 16 | 16 | 256–2048 | none |
UltraSPARC IIi (Sapphire-Red) | Sun SME1430 | 333–480 | V9 | 1998 | 1×1=1 | 250 | 5.4 | -- | 587 | 21[note 6] | 1.9 | 16 | 16 | 2048 | none |
UltraSPARC IIe (Hummingbird) | Sun SME1701 | 400–500 | V9 | 1999 | 1×1=1 | 180 Al | -- | -- | 370 | 13[note 7] | 1.5–1.7 | 16 | 16 | 256 | none |
UltraSPARC IIi (IIe+) (Phantom) | Sun SME1532 | 550–650 | V9 | 2000 | 1×1=1 | 180 Cu | -- | -- | 370 | 17.6 | 1.7 | 16 | 16 | 512 | none |
SPARC64 GP | Fujitsu SFCB81147 | 400–563 | V9 | 2000 | 1×1=1 | 180 | 30.2 | 217 | -- | -- | 1.8 | 128 | 128 | 8192 | -- |
SPARC64 GP | -- | 600–810 | V9 | -- | 1×1=1 | 150 | 30.2 | -- | -- | -- | 1.5 | 128 | 128 | 8192 | -- |
SPARC64 IV | Fujitsu MBCS80523 | 450–810 | V9 | 2000 | 1×1=1 | 130 | -- | -- | -- | -- | -- | 128 | 128 | 2048 | -- |
UltraSPARC III (Cheetah) | Sun SME1050 | 600 | JPS1 | 2001 | 1×1=1 | 180 Al | 29 | 330 | 1368 | 53 | 1.6 | 64 | 32 | 8192 | none |
UltraSPARC III (Cheetah) | Sun SME1052 | 750–900 | JPS1 | 2001 | 1×1=1 | 130 Al | 29 | -- | 1368 | -- | 1.6 | 64 | 32 | 8192 | none |
UltraSPARC III Cu (Cheetah+) | Sun SME1056 | 1002–1200 | JPS1 | 2001 | 1×1=1 | 130 Cu | 29 | 232 | 1368 | 80[note 8] | 1.6 | 64 | 32 | 8192 | none |
UltraSPARC IIIi (Jalapeño) | Sun SME1603 | 1064–1593 | JPS1 | 2003 | 1×1=1 | 130 | 87.5 | 206 | 959 | 52 | 1.3 | 64 | 32 | 1024 | none |
SPARC64 V (Zeus) | Fujitsu | 1100–1350 | JPS1 | 2003 | 1×1=1 | 130 | 190 | 289 | 269 | 40 | 1.2 | 128 | 128 | 2048 | -- |
SPARC64 V+ (Olympus-B) | Fujitsu | 1650–2160 | JPS1 | 2004 | 1×1=1 | 90 | 400 | 297 | 279 | 65 | 1 | 128 | 128 | 4096 | -- |
UltraSPARC IV (Jaguar) | Sun SME1167 | 1050–1350 | JPS2 | 2004 | 1×2=2 | 130 | 66 | 356 | 1368 | 108 | 1.35 | 64 | 32 | 16384 | none |
UltraSPARC IV+ (Panther) | Sun SME1167A | 1500–2100 | JPS2 | 2005 | 1×2=2 | 90 | 295 | 336 | 1368 | 90 | 1.1 | 64 | 64 | 2048 | 32768 |
UltraSPARC T1 (Niagara) | Sun SME1905 | 1000–1400 | UA2005 | 2005 | 4×8=32 | 90 | 300 | 340 | 1933 | 72 | 1.3 | 8 | 16 | 3072 | none |
SPARC64 VI (Olympus-C) | Fujitsu | 2150–2400 | JPS2 | 2007 | 2×2=4 | 90 | 540 | 422 | -- | 120–150 | 1.1 | 128×2 | 128×2 | 4096–6144 | none |
UltraSPARC T2 (Niagara 2) | Sun SME1908A | 1000–1600 | UA2007 | 2007 | 8×8=64 | 65 | 503 | 342 | 1831 | 95 | 1.1–1.5 | 8 | 16 | 4096 | none |
UltraSPARC T2 Plus (Victoria Falls) | Sun SME1910A | 1200–1600 | UA2007 | 2008 | 8×8=64 | 65 | 503 | 342 | 1831 | - | - | 8 | 16 | 4096 | none |
SPARC64 VII (Jupiter)[9] | Fujitsu | 2400–2880 | JPS2 | 2008 | 2×4=8 | 65 | 600 | 445 | -- | 150 | -- | 64×4 | 64×4 | 6144 | none |
UltraSPARC "RK" (Rock)[10] | Sun SME1832 | 2300 | ???? | canceled[11] | 2×16=32 | 65 | ? | 396 | 2326 | ? | ? | 32 | 32 | 2048 | ? |
SPARC64 VIIIfx (Venus)[12][13] | Fujitsu | 2000 | JPS2 / HPC-ACE | 2009 | 1×8=8 | 45 | 760 | 513 | 1271 | 58 | ? | 32×8 | 32×8 | 6144 | none |
SPARC T3 (Rainbow Falls) | Oracle/Sun | 1650 | UA2007 | 2010 | 8×16=128 | 40[14] | ???? | 371 | ? | 139 | ? | 8 | 16 | 6144 | none |
Galaxy FT-1500 | NUDT (China) | 1800 | UA2007? | 201? | 8×16=128 | 40 | ???? | ??? | ? | 65 | ? | 16×16 | 16×16 | 512×16 | 4096 |
SPARC64 VII+ (Jupiter-E or M3)[15][16] | Fujitsu | 2667–3000 | JPS2 | 2010 | 2×4=8 | 65 | - | - | - | 160 | - | 64×4 | 64×4 | 12288 | none |
LEON4 | Aeroflex Gaisler | 125–1500 | V8E | 2010 | 1×1=1 | 32 | - | - | - | ??? | - | ??? | ??? | ??? | ??? |
R1000 | MCST (Russia) | 1000 | JPS2 | 2011 | 1×4=4 | 90 | 180 | 128 | - | 15 | 1, 1.8, 2.5 | 32 | 16 | 2048 | none |
SPARC T4 (Yosemite Falls)[17] | Oracle | 2850–3000 | OSA2011 | 2011 | 8×8=64 | 40 | 855 | 403 | ? | 240 | ? | 16×8 | 16×8 | 128×8 | 4096 |
SPARC64 IXfx[18][19][20] | Fujitsu | 1850 | JPS2 / HPC-ACE | 2012 | 1x16=16 | 40 | 1870 | 484 | 1442 | 110 | ? | 32×16 | 32×16 | 12288 | none |
SPARC64 X (Athena)[21] | Fujitsu | 2800 | OSA2011 / HPC-ACE | 2012 | 2×16=32 | 28 | 2950 | 587.5 | 1500 | 270 | ? | 64×16 | 64×16 | 24576 | none |
SPARC T5 | Oracle | 3600 | OSA2011 | 2013 | 8×16=128 | 28 | 1500 | 478 | ? | ? | ? | 16×16 | 16×16 | 128×16 | 8192 |
SPARC M5 | Oracle | 3600 | OSA2011 | 2013 | 8×6=48 | 28 | 3900 | ? | ? | ? | ? | 16×6 | 16×6 | 128×6 | 49152 |
SPARC M6 | Oracle | 3600 | OSA2011 | 2013 | 8×12=96 | 28 | ? | ? | ? | ? | ? | 16×12 | 16×12 | 128×12 | 49152 |
SPARC64 X+ (Athena+)[22] | Fujitsu | 3200–3700 | OSA2011 / HPC-ACE | 2014 | 2×16=32 | 28 | 2990 | 600 | 1500 | 392 | ? | 64×16 | 64×16 | 24M | none |
SPARC64 XIfx[23] | Fujitsu | 2200 | JPS2 / HPC-ACE2 | 2015? | 1×(32+2)=34 | 20 | 3750 | ? | 1001 | ? | ? | 64×34 | 64×34 | 12M×2 | none |
SPARC M7[24][25] | Oracle | 4133 | OSA2015 | 2015 | 8×32=256 | 20 | >10,000 | ? | ? | ? | ? | 16×32 | 16×32 | 256×24 | 65536 |
SPARC S7[26][27] | Oracle | 4270 | OSA2015 | 2016 | 8×8=64 | 20 | ???? | ? | ? | ? | ? | 16×8 | 16×8 | 256×2+256×4 | 16384 |
Name (codename) | Model | Frequency (MHz) | Arch. version | Year | Total threads[note 1] | Process (nm) | Transistors (millions) | Die size (mm2) | IO pins | Power (W) | Voltage (V) | L1 Dcache (KB) | L1 Icache (KB) | L2 cache (KB) | L3 cache (KB) |
Notes:
- 1 2 Threads per core × number of cores
- ↑ Various SPARC V7 implementations were produced by Fujitsu, LSI Logic, Weitek, Texas Instruments and Cypress. A SPARC V7 processor generally consisted of several discrete chips, usually comprising an integer unit (IU), a floating-point unit (FPU), a memory management unit (MMU) and cache memory.
- ↑ @167 MHz
- ↑ @250 MHz
- ↑ @400 MHz
- ↑ @440 MHz
- ↑ max. @500 MHz
- ↑ @900 MHz
Operating system support
SPARC machines have generally used Sun's SunOS, Solaris, OpenSolaris or derived as Illumos, but other operating systems such as NeXTSTEP, RTEMS, FreeBSD, OpenBSD, NetBSD, and Linux have also been used.
In 1993, Intergraph announced a port of Windows NT to the SPARC architecture,[28] but it was later cancelled.
In October 2015, Oracle announced a "Linux for SPARC reference platform".[29]
Open source implementations
Several fully open source implementations of the SPARC architecture exist:
- LEON, a 32-bit, SPARC Version 8 implementation, designed especially for space use. Source code is written in VHDL, and licensed under the GPL.
- OpenSPARC T1, released in 2006, a 64-bit, 32-thread implementation conforming to the UltraSPARC Architecture 2005 and to SPARC Version 9 (Level 1). Source code is written in Verilog, and licensed under many licenses. Most OpenSPARC T1 source code is licensed under the GPL. Source based on existent open source projects will continue to be licensed under their current licenses. Binary programs are licensed under a binary software license agreement.
- S1, a 64-bit Wishbone compliant CPU core based on the OpenSPARC T1 design. It is a single UltraSPARC v9 core capable of 4-way SMT. Like the T1, the source code is licensed under the GPL.
- OpenSPARC T2, released in 2008, a 64-bit, 64-thread implementation conforming to the UltraSPARC Architecture 2007 and to SPARC Version 9 (Level 1). Source code is written in Verilog, and licensed under many licenses. Most OpenSPARC T2 source code is licensed under the GPL. Source based on existing open source projects will continue to be licensed under their current licenses. Binary programs are licensed under a binary Software License Agreement.
A fully open source simulator for the SPARC architecture also exists:
- RAMP Gold, a 32-bit, 64-thread SPARC Version 8 implementation, designed for FPGA-based architecture simulation. RAMP Gold is written in ~36,000 lines of SystemVerilog, and licensed under the BSD licenses.
Supercomputers
For HPC loads Fujitsu builds specialized SPARC64 fx processors with a new instruction extensions set called HPC-ACE (High Performance Computing – Arithmetic Computational Extensions).
Fujitsu's K computer ranked #1 in TOP500 – June 2011 and November 2011 lists. It combines 88,128 SPARC64 VIIIfx CPUs, each with eight cores, for a total of 705,024 cores – almost twice as many as any other system in the TOP500 at that time. The K Computer was more powerful than the next five systems on the list combined, and had the highest performance-to-power ratio of any other supercomputer system.[30] It also ranked #6 in Green500 – June 2011 list, with a score of 824.56 MFLOPS/W.[31] In the November 2012 release of TOP500, the K computer ranked #3, using by far the most power of the top three.[32] It ranked #85 on the corresponding Green500 release.[33] Newer HPC processors, IXfx and XIfx, were included in recent PRIMEHPC FX10 and FX100 supercomputers.
Tianhe-2 (TOP500 #1 as of November 2014[34]) has a number of nodes with Galaxy FT-1500 OpenSPARC-based processors developed in China. However, those processors did not contribute to the LINPACK score.[35][36]
See also
- ERC32 – based on SPARC V7 specification
- Ross Technology, Inc. – a SPARC microprocessor developer during the 1980s and 1990s
- Sparcle – a modified SPARC with multiprocessing support used by the MIT Alewife project
- LEON – a space rated SPARC V8 processor.
- R1000 – a Russian quad-core microprocessor based on SPARC V9 specification
- Galaxy FT-1500 – a Chinese 16-core OpenSPARC based processor
References
- ↑ "SPARC64 X+: Fujitsu's Next Generation Processor for UNIX servers" (PDF). Fujitsu. September 2, 2013. Retrieved May 26, 2015.
- 1 2 "Oracle SPARC Architecture 2015: One Architecture ... Multiple Innovative Implementations" (PDF). Draft D1.0.0. January 12, 2016. Retrieved June 13, 2016.
IMPL. DEP. #2-V8: An Oracle SPARC Architecture implementation may contain from 72 to 640 general-purpose 64-bit R registers. This corresponds to a grouping of the registers into MAXPGL + 1 sets of global R registers plus a circular stack of N_REG_WINDOWS sets of 16 registers each, known as register windows. The number of register windows present (N_REG_WINDOWS) is implementation dependent, within the range of 3 to 32 (inclusive).
- ↑ "SPARC Options", Using the GNU Compiler Collection (GCC), GNU, retrieved January 8, 2013
- ↑ SPARC Optimizations With GCC, OSNews, February 23, 2004, retrieved January 8, 2013
- ↑ Weaver, D. L.; Germond, T., eds. (1994), "The SPARC Architecture Manual, Version 9" (PDF), SPARC International, Inc., Prentice Hall, ISBN 0-13-825001-4, retrieved December 6, 2011
- ↑ "SPARC Behavior and Implementation". Numerical Computation Guide – Sun Studio 10. Sun Microsystems, Inc. 2004. Retrieved September 24, 2011.
There are four situations, however, when the hardware will not successfully complete a floating-point instruction: ... The instruction is not implemented by the hardware (such as ... quad-precision instructions on any SPARC FPU).
- ↑ "Oracle SPARC Architecture 2011" (PDF), Oracle Corporation, May 21, 2014, retrieved November 25, 2015
- ↑ John Soat. "SPARC M7 Innovation". Oracle web site. Oracle Corporation. Retrieved October 13, 2015.
- ↑ FX1 Key Features & Specifications (PDF), Fujitsu, February 19, 2008, retrieved December 6, 2011
- ↑ Tremblay, Marc; Chaudhry, Shailender (February 19, 2008), "A Third-Generation 65nm 16-Core 32-Thread Plus 32-Scout-Thread CMT SPARC(R) Processor" (PDF), OpenSPARC, Sun Microsystems, retrieved December 6, 2011
- ↑ Vance, Ashlee (June 15, 2009), "Sun Is Said to Cancel Big Chip Project", The New York Times, retrieved May 23, 2010
- ↑ "Fujitsu shows off SPARC64 VII", heise online, August 28, 2008, retrieved December 6, 2011
- ↑ Barak, Sylvie (May 14, 2009), "Fujitsu unveils world's fastest CPU", The Inquirer, retrieved December 6, 2011
- ↑ "Sparc T3 processor" (PDF), Oracle Corporation, retrieved December 6, 2011
- ↑ Morgan, Timothy Prickett (December 3, 2010), "Ellison: Sparc T4 due next year", The Register, retrieved December 6, 2011
- ↑ "SPARC Enterprise M-series Servers Architecture" (PDF), Fujitsu, April 2011
- ↑ Morgan, Timothy Prickett (August 22, 2011), "Oracle's Sparc T4 chip", The Register, retrieved December 6, 2011
- ↑ Morgan, Timothy Prickett (November 21, 2011), "Fujitsu parades 16-core Sparc64 super stunner", The Register, retrieved December 8, 2011
- ↑ "Fujitsu Launches PRIMEHPC FX10 Supercomputer", Fujitsu, November 7, 2011, retrieved February 3, 2012
- ↑ http://www.fujitsu.com/downloads/TC/sc11/sparc64-ixfx-sc11.pdf
- ↑ https://www.fujitsu.com/global/Images/HC25.27.910-SPARC64.pdf
- ↑ https://www.fujitsu.com/global/Images/HotChips24_Fujitsu_presentation.pdf
- ↑ http://www.fujitsu.com/global/Images/20140811hotchips26.pdf
- ↑ http://swisdev.oracle.com/_files/M7_Preso.pdf M7: Next Generation SPARC. Hotchips 26 – August 12, 2014. Stephen Phillips
- ↑ http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-t7-m7-server-architecture-2702877.pdf Oracle's SPARC T7 and SPARC M7 Server Architecture. October 2015
- ↑ http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.24-Monday-Epub/HC27.24.30-HP-Cloud-Comm-Epub/HC27.24.330-sonoma.Vinalk-oracle-v3.pdf Hot Chips – August 23–25, 2015 – Conf. Day1 – Oracle’s Sonoma Processor: Advanced low-cost SPARC processor for enterprise workloads by Basant Vinaik and Rahoul Puri
- ↑ http://www.theregister.co.uk/2015/08/24/oracle_sonoma_processor_sparc/?page=1 Blueprints revealed: Oracle crams Sparc M7 and InfiniBand into cheaper 'Sonoma' chips
- ↑ McLaughlin, John (July 7, 1993), "Intergraph to Port Windows NT to SPARC", The Florida SunFlash, 55 (11), retrieved December 6, 2011
- ↑ Project: Linux for SPARC - oss.oracle.com, October 12, 2015, retrieved December 4, 2015
- ↑ "TOP500 List (1-100)", TOP500, June 2011, retrieved December 6, 2011
- ↑ "The Green500 List", Green500, June 2011
- ↑ "Top500 List – November 2012 | TOP500 Supercomputer Sites", TOP500, November 2012, retrieved January 8, 2013
- ↑ "The Green500 List – November 2012 | The Green500", Green500, November 2012, retrieved January 8, 2013
- ↑ "Tianhe-2 (MilkyWay-2)", TOP500, May 2015, retrieved May 27, 2015
- ↑ Keane, Andy, "Tesla Supercomputing" (mp4), Nvidia, retrieved December 6, 2011
- ↑ U.S. says China building 'entirely indigenous' supercomputer, by Patrick Thibodeau Computerworld, November 4, 2010
External links
Wikimedia Commons has media related to SPARC microprocessors. |
- SPARC International, Inc.
- Oracle SPARC Processor Documentation
- SPARC Technical Documents
- OpenSPARC Architecture specification
- Fujitsu SPARC64 V, VI, VII, VIIIfx, IXfx and X, X+ extensions
- Sun – UltraSPARC Processors Documentation, archive.org copy
- Sun – FOSS Open Hardware Documentation, archive.org copy
- Oracle SPARC and Solaris Public Roadmap
- Fujitsu SPARC Roadmap
- SPARC processor images and descriptions
- The Rough Guide to MBus Modules (SuperSPARC, hyperSPARC)
- SPARC at DMOZ