Isotopes of iron
Naturally occurring iron (Fe) consists of four stable isotopes: 5.845% of 54Fe (possibly radioactive with a half-life over 3.1×1022 years), 91.754% of 56Fe, 2.119% of 57Fe and 0.282% of 58Fe. There are 24 known radioactive isotopes and their half-lives are shown below. See Brookhaven National Laboratory Interactive Table of Nuclides for a more accurate reading.
Much of the past work on measuring the isotopic composition of Fe has centered on determining 60Fe variations due to processes accompanying nucleosynthesis (i.e., meteorite studies) and ore formation. In the last decade however, advances in mass spectrometry technology have allowed the detection and quantification of minute, naturally occurring variations in the ratios of the stable isotopes of iron. Much of this work has been driven by the Earth and planetary science communities, although applications to biological and industrial systems are beginning to emerge.[1]
Relative atomic mass: 55.845(2).
Iron-54
54Fe is observationally stable, but theoretically can decay to 54Cr, with a half-life of more than 3.1x1022 years via double electron capture (εε).
Iron-56
The isotope 56Fe is the isotope with the lowest mass per nucleon, 930.412 MeV/c2, though not the isotope with the highest nuclear binding energy per nucleon, which is nickel-62.[2] However, because of the details of how nucleosynthesis works, 56Fe is a more common endpoint of fusion chains inside extremely massive stars and is therefore more common in the universe, relative to other metals, including 62Ni, 58Fe and 60Ni, all of which have a very high binding energy.
Iron-57
The isotope 57Fe is widely used in Mössbauer spectroscopy and the related nuclear resonance vibrational spectroscopy due to the low natural variation in energy of the 14.4 keV nuclear transition.[3] The transition was famously used to make the first definitive measurement of gravitational redshift, in the 1960 Pound-Rebka experiment.[4]
Iron-60
Iron-60 is an iron isotope with a half-life of 2.6 million years,[5][6] but was thought until 2009 to have a half-life of 1.5 million years. It undergoes beta decay to cobalt-60. Traces of Iron 60 have been found in Lunar samples.
In phases of the meteorites Semarkona and Chervony Kut a correlation between the concentration of 60Ni, the granddaughter isotope of 60Fe, and the abundance of the stable iron isotopes could be found, which is evidence for the existence of 60Fe at the time of formation of the solar system. Possibly the energy released by the decay of 60Fe contributed, together with the energy released by decay of the radionuclide 26Al, to the remelting and differentiation of asteroids after their formation 4.6 billion years ago. The abundance of 60Ni present in extraterrestrial material may also provide further insight into the origin of the solar system and its early history.
Remnants of Iron-60 found in fossilised bacteria in sea floor sediments suggest there was a supernova in the vicinity of the solar system approx 2 million years ago.[7][8]
Table
nuclide symbol |
Z(p) | N(n) | isotopic mass (u) |
half-life | decay mode(s)[9][n 1] |
daughter isotope(s)[n 2] |
nuclear spin |
representative isotopic composition (mole fraction) |
range of natural variation (mole fraction) |
---|---|---|---|---|---|---|---|---|---|
excitation energy | |||||||||
45Fe | 26 | 19 | 45.01458(24)# | 1.89(49) ms | β+ (30%) | 45Mn | 3/2+# | ||
2p (70%) | 43Cr | ||||||||
46Fe | 26 | 20 | 46.00081(38)# | 9(4) ms [12(+4-3) ms] |
β+ (>99.9%) | 46Mn | 0+ | ||
β+, p (<.1%) | 45Cr | ||||||||
47Fe | 26 | 21 | 46.99289(28)# | 21.8(7) ms | β+ (>99.9%) | 47Mn | 7/2−# | ||
β+, p (<.1%) | 46Cr | ||||||||
48Fe | 26 | 22 | 47.98050(8)# | 44(7) ms | β+ (96.41%) | 48Mn | 0+ | ||
β+, p (3.59%) | 47Cr | ||||||||
49Fe | 26 | 23 | 48.97361(16)# | 70(3) ms | β+, p (52%) | 48Cr | (7/2−) | ||
β+ (48%) | 49Mn | ||||||||
50Fe | 26 | 24 | 49.96299(6) | 155(11) ms | β+ (>99.9%) | 50Mn | 0+ | ||
β+, p (<.1%) | 49Cr | ||||||||
51Fe | 26 | 25 | 50.956820(16) | 305(5) ms | β+ | 51Mn | 5/2− | ||
52Fe | 26 | 26 | 51.948114(7) | 8.275(8) h | β+ | 52mMn | 0+ | ||
52mFe | 6.81(13) MeV | 45.9(6) s | β+ | 52Mn | (12+)# | ||||
53Fe | 26 | 27 | 52.9453079(19) | 8.51(2) min | β+ | 53Mn | 7/2− | ||
53mFe | 3040.4(3) keV | 2.526(24) min | IT | 53Fe | 19/2− | ||||
54Fe | 26 | 28 | 53.9396105(7) | Observationally Stable[n 3] | 0+ | 0.05845(35) | 0.05837–0.05861 | ||
54mFe | 6526.9(6) keV | 364(7) ns | 10+ | ||||||
55Fe | 26 | 29 | 54.9382934(7) | 2.737(11) y | EC | 55Mn | 3/2− | ||
56Fe[n 4] | 26 | 30 | 55.9349375(7) | Stable | 0+ | 0.91754(36) | 0.91742–0.91760 | ||
57Fe | 26 | 31 | 56.9353940(7) | Stable | 1/2− | 0.02119(10) | 0.02116–0.02121 | ||
58Fe | 26 | 32 | 57.9332756(8) | Stable | 0+ | 0.00282(4) | 0.00281–0.00282 | ||
59Fe | 26 | 33 | 58.9348755(8) | 44.495(9) d | β− | 59Co | 3/2− | ||
60Fe | 26 | 34 | 59.934072(4) | 2.6×106 y | β− | 60Co | 0+ | trace | |
61Fe | 26 | 35 | 60.936745(21) | 5.98(6) min | β− | 61Co | 3/2−,5/2− | ||
61mFe | 861(3) keV | 250(10) ns | 9/2+# | ||||||
62Fe | 26 | 36 | 61.936767(16) | 68(2) s | β− | 62Co | 0+ | ||
63Fe | 26 | 37 | 62.94037(18) | 6.1(6) s | β− | 63Co | (5/2)− | ||
64Fe | 26 | 38 | 63.9412(3) | 2.0(2) s | β− | 64Co | 0+ | ||
65Fe | 26 | 39 | 64.94538(26) | 1.3(3) s | β− | 65Co | 1/2−# | ||
65mFe | 364(3) keV | 430(130) ns | (5/2−) | ||||||
66Fe | 26 | 40 | 65.94678(32) | 440(40) ms | β− (>99.9%) | 66Co | 0+ | ||
β−, n (<.1%) | 65Co | ||||||||
67Fe | 26 | 41 | 66.95095(45) | 394(9) ms | β− (>99.9%) | 67Co | 1/2−# | ||
β−, n (<.1%) | 66Co | ||||||||
67mFe | 367(3) keV | 64(17) µs | (5/2−) | ||||||
68Fe | 26 | 42 | 67.95370(75) | 187(6) ms | β− (>99.9%) | 68Co | 0+ | ||
β−, n | 67Co | ||||||||
69Fe | 26 | 43 | 68.95878(54)# | 109(9) ms | β− (>99.9%) | 69Co | 1/2−# | ||
β−, n (<.1%) | 68Co | ||||||||
70Fe | 26 | 44 | 69.96146(64)# | 94(17) ms | 0+ | ||||
71Fe | 26 | 45 | 70.96672(86)# | 30# ms [>300 ns] |
7/2+# | ||||
72Fe | 26 | 46 | 71.96962(86)# | 10# ms [>300 ns] |
0+ |
- ↑ Abbreviations:
EC: Electron capture
IT: Isomeric transition - ↑ Bold for stable isotopes
- ↑ Believed to decay by β+β+ to 54Cr with a half-life of over 3.1×1022 a
- ↑ Lowest mass per nucleon of all nuclides; End product of stellar nucleosynthesis
Notes
- Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
- Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
- Nuclide masses are given by IUPAP Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUNAMCO)
- Isotope abundances are given by IUPAC Commission on Isotopic Abundances and Atomic Weights
See also
References
- ↑ N. Dauphas; O. Rouxel (2006). "Mass spectrometry and natural variations of iron isotopes". Mass Spectrometry Reviews. 25 (4): 515–550. doi:10.1002/mas.20078. PMID 16463281.
- ↑ Fewell, M. P. "The atomic nuclide with the highest mean binding energy". American Journal of Physics 63 (7): 653-58. Accessed: 2011-03-22. (Archived by WebCite® at http://www.webcitation.org/5xNHry2gq)
- ↑ R. Nave. "Mossbauer Effect in Iron-57". HyperPhysics. Georgia State University. Retrieved 2009-10-13.
- ↑ Pound, R. V.; Rebka Jr. G. A. (April 1, 1960). "Apparent weight of photons". Physical Review Letters. 4 (7): 337–341. Bibcode:1960PhRvL...4..337P. doi:10.1103/PhysRevLett.4.337.
- ↑ Rugel, G.; Faestermann, T.; Knie, K.; Korschinek, G.; Poutivtsev, M.; Schumann, D.; Kivel, N.; Günther-Leopold, I.; Weinreich, R.; Wohlmuther, M. (2009). "New Measurement of the 60Fe Half-Life". Physical Review Letters. 103 (7): 72502. Bibcode:2009PhRvL.103g2502R. doi:10.1103/PhysRevLett.103.072502.
- ↑ "Eisen mit langem Atem".
- ↑ Ancient bacteria store signs of supernova smattering
- ↑ Ocean sediment sample holds iron believed to be from a supernova. Aug 2016
- ↑ "Universal Nuclide Chart". nucleonica. (registration required (help)).
- Isotope masses from:
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001.
- Isotopic compositions and standard atomic masses from:
- J. R. de Laeter; J. K. Böhlke; P. De Bièvre; H. Hidaka; H. S. Peiser; K. J. R. Rosman; P. D. P. Taylor (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- M. E. Wieser (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051. Lay summary.
- Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001.
- National Nuclear Data Center. "NuDat 2.1 database". Brookhaven National Laboratory. Retrieved September 2005. Check date values in:
|access-date=
(help) - N. E. Holden (2004). "Table of the Isotopes". In D. R. Lide. CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. Section 11. ISBN 978-0-8493-0485-9.
- "Supernova iron discovered on Earth’s Moon - The Hindu"
Further reading
- J. M. Nielsen (1960). The Radiochemistry of Iron (PDF). National Academy of Sciences/National Research Council.
Isotopes of manganese | Isotopes of iron | Isotopes of cobalt |
Table of nuclides |
Isotopes of the chemical elements | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 H |
2 He | ||||||||||||||||
3 Li |
4 Be |
5 B |
6 C |
7 N |
8 O |
9 F |
10 Ne | ||||||||||
11 Na |
12 Mg |
13 Al |
14 Si |
15 P |
16 S |
17 Cl |
18 Ar | ||||||||||
19 K |
20 Ca |
21 Sc |
22 Ti |
23 V |
24 Cr |
25 Mn |
26 Fe |
27 Co |
28 Ni |
29 Cu |
30 Zn |
31 Ga |
32 Ge |
33 As |
34 Se |
35 Br |
36 Kr |
37 Rb |
38 Sr |
39 Y |
40 Zr |
41 Nb |
42 Mo |
43 Tc |
44 Ru |
45 Rh |
46 Pd |
47 Ag |
48 Cd |
49 In |
50 Sn |
51 Sb |
52 Te |
53 I |
54 Xe |
55 Cs |
56 Ba |
72 Hf |
73 Ta |
74 W |
75 Re |
76 Os |
77 Ir |
78 Pt |
79 Au |
80 Hg |
81 Tl |
82 Pb |
83 Bi |
84 Po |
85 At |
86 Rn | |
87 Fr |
88 Ra |
104 Rf |
105 Db |
106 Sg |
107 Bh |
108 Hs |
109 Mt |
110 Ds |
111 Rg |
112 Cn |
113 Nh |
114 Fl |
115 Mc |
116 Lv |
117 Ts |
118 Og | |
57 La |
58 Ce |
59 Pr |
60 Nd |
61 Pm |
62 Sm |
63 Eu |
64 Gd |
65 Tb |
66 Dy |
67 Ho |
68 Er |
69 Tm |
70 Yb |
71 Lu | |||
89 Ac |
90 Th |
91 Pa |
92 U |
93 Np |
94 Pu |
95 Am |
96 Cm |
97 Bk |
98 Cf |
99 Es |
100 Fm |
101 Md |
102 No |
103 Lr | |||
|