Short rotation coppice

A field of coppiced poplar in Hampshire

Short rotation coppice (SRC) is coppice grown as an energy crop. This woody solid biomass can be used in applications such as district heating, electric power generating stations, alone or in combination with other fuels. Currently, the leading countries in area planted for energy generation are Sweden [1] and the UK.

Species used

SRC uses said high yield varieties of poplar and willow. Typically willow species chosen are varieties of the Common Osier or Basket Willow, Salix viminalis. Poplar is generally planted for visual variation rather than being a commercial crop, although some varieties can outperform willow on suitable sites.[2]

Species are selected for their acceptance of varying climate and soil conditions, relative insusceptibility to pests and diseases, ease of propagation and speed of vegetative growth. To combat pests such as brassy and blue willow beetles, as well as the fungal pathogen Melampsora (a rust), planting a carefully selected mix of varieties is recommended.[3] The management of the plantations highly affects the productivity and its success.[4]

Planting

SRC can be planted on a wide range of soil types from heavy clay to sand,[5] including land reclaimed from gravel extraction and colliery spoil. Where used as a pioneer species the SRC yield may be smaller. Water availability to the roots is a key determinant for the success of the SRC.[6]

Saplings are planted at a high density, around 15,000 per hectare for willow and 12,000 per hectare for poplar.[3] Planting takes place around March to take advantage of the high moisture of the soil in the spring and the amount of sunshine in the early summer. The most efficient planting machines plant four rows at a time and can plant a hectare in around three hours. Saplings are left to grow for a year and then coppiced.

The primary barrier to establishing plantations is the cost as there is no financial reward for four years from a large initial investment. However, in the UK grants are available to support establishment,[7][8] and in Sweden an extensive scheme of subsidies was developed during 1991-1996, being reduced after that time.[9]

Harvesting

Harvests take place on a two to five-year cycle, and are carried out in winter after leaf fall when the soil is frozen. The established root system and the nutrients stored in the roots and stumps guarantee vigorous growth for the shoots. A plantation will yield from 8 to 18 tonnes of dry woodchip per hectare per year. A plantation can be harvested for up to thirty years before needing to be replanted.

When willow or poplar shoots are harvested as whole stems they are easy to store. The stems can be dried for combustion in a pile outdoors; the moisture content of the wood will decrease to about 30% on average until the next autumn. The stems can be cut further into billets that may not need to be chipped depending on use.

Where wood chip is being produced it is most efficient to use direct-chip harvesters. These are heavy self-powered machines that cut and chip the shoots on a loading platform. Some can be attached to a normal tractor and a hectare can be harvested in around 3 hours. Direct chipping reduces costs as a separate chipping in the store will not be needed; however, the wood chip needs to be well stored to avoid it composting. Harvesting Poplar requires heavier machinery as it produces fewer and heavier stems.

The price of dry willow as a heating fuel is currently around 45 euro per tonne in most of Europe. This is not a relatively high-return crop, but it is low-maintenance and is a way of utilising difficult fields. Small-scale production can be combined with the production of material for wicker work. Correctly managed, there is little need for pesticides or treatments.

Environmental impacts

Greenhouse gases

SRC has a low greenhouse gas impact as any carbon dioxide released in power generation will have been sequestered by the plantation over just a few years. Some carbon may also be stored in the soil, however the extent of this carbon storage is dependent on the carbon content of the soil to begin with.[10]

The carbon costs associated with SRC are: the planting, farming and chipping of the SRC plantation, generally done with fossil fuel powered machinery; the crops require herbicides during establishment, fertiliser throughout growth, and occasional pesticide treatment - these chemicals require substantial amounts of energy and potential fossil fuel usage through manufacture. In general, the environmental contribution of the short rotation plantations of willow can be considered positive towards the environment when compared to other agricultural options [11] even when alternative energetic uses are considered.[12]

Furthermore, willow and poplar SRC offer an alternitve use to intence draind farm land. If the drenage of these sides would be derceased, this support an positiv impact on the CO2-balance. In addition, a use of moist location could avoid negative effects on the local waterbalance as well as sensitv ecosystems.[13][14]

Electricity or heat from SRC provides between three and six times the CO2 reduction per pound that can be obtained from bioethanol from cereal crops. However, the reduction in CO2 emissions is slightly lower than grass energy crops such as Miscanthus grass due to higher maintenance costs.

Biodiversity

Good conservation management encouraging biodiversity can reduce the reliance on pesticides. Biomass crops such as SRC willow show higher levels of biodiversity in comparison with intensive arable and grassland crops.[15] SRC has a higher water consumption than agricultural crops. The root systems of SRC have a lower impact on archaeological remains than forestry but greater than agricultural crops such as wheat.

Energy generation

A power station requires around 100 hectares (1 km²) of SRC for 1 MW of power capacity.[16] The current nature of the power industry generally requires flexibility in energy supply which is incompatible with the long term commitment SRC requires; however, there is much interest in SRC due to the need to reduce fossil carbon emissions. Grants may also be available in some jurisdictions to further this type of land-use.

Enköping (Sweden) established a successful model that combines heat generation from biomass, SRC and phytoremediation. The municipality manages about 80 ha of willow plantations that are used in the district heating plant. At the same time, these plantations are used as a green filter for water treatment, which improves the functionality and the efficiency of the whole system.[17]

See also

Further reading

References

  1. Mola-Yudego, B; González-Olabarria J. R. (2010). "Mapping the expansion and distribution of willow plantations for bioenergy in Sweden: lessons to be learned about the spread of energy crops". Biomass and Bioenergy (PDF). 34 (4): 442–448. doi:10.1016/j.biombioe.2009.12.008.
  2. Aylott, Matthew; Casella, Eric; Tubby, Ian; Street, Nathaniel; Smith, Pete; Taylor, Gail (2008). "Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK" (PDF). New Phytologist. 178 (2): 358–370. doi:10.1111/j.1469-8137.2008.02396.x. PMID 18331429. Retrieved 2008-10-22.
  3. 1 2 Defra Growing Short Rotation Coppice
  4. Mola-Yudego, Blas; Aronsson, Pär (2008). "Yield models for commercial willow biomass plantations in Sweden" (PDF). Biomass and Bioenergy. 32 (9): 829–837. doi:10.1016/j.biombioe.2008.01.002. Retrieved 2009-05-11.
  5. National Non-Food Crops Centre. NNFCC Crop Factsheet: Short Rotation Coppice (SRC) Willow
  6. Hartwich, Jens; Bölscher, Jens; Schulte, Achim (2014). "Impact of short-rotation coppice on water and land resources Impact of short-rotation coppice on water and land resources" (online / PDF). Water International. doi:10.1080/02508060.2014.959870. Retrieved 2014-09-24.
  7. Natural England.Energy Crops Scheme: Establishment Grants Handbook
  8. NNFCC.PowerPlants2020 Web Resource for Energy Crops in UK
  9. Mola-Yudego, Blas; Pelkonen, Paavo (2008). "The effects of policy incentives in the adoption of willow short rotation coppice for bioenergy in Sweden" (PDF). Energy Policy. 36 (8): 3062–3068. doi:10.1016/j.enpol.2008.03.036. Retrieved 2012-07-05.
  10. Hillier, Jonathan; Whittaker, Carly; Dailey, Gordon; Aylott, Matthew; Casella, Eric; Smith, Pete; Riche, Andrew; Murphy, Richard; et al. (2009). "Greenhouse gas emissions from four bioenergy crops in England and Wales: Integrating spatial estimates of yield and soil carbon balance in life cycle analyses". Global Change Biology Bioenergy. 1 (4): 267–281. doi:10.1111/j.1757-1707.2009.01021.x.
  11. Gonzalez-Garcia S, Mola-Yudego B, Dimitriou J, Aronsson, P, Murphy RJ; Mola-Yudego; Dimitriou; Aronsson; Murphy (2012). "Environmental assessment of energy production based on long term commercial willow plantations in Sweden". Science of the Total Environment (PDF). 421: 210–219. doi:10.1016/j.scitotenv.2012.01.041. PMID 22369863.
  12. Gonzalez-Garcia S, Mola-Yudego B, Murphy RJ (2013). "Life Cycle Assessment of potential energy uses for short rotation willow biomass in Sweden". International Journal of Life Cycle Assessment (PDF). 18 (4): 783–795. doi:10.1007/s11367-012-0536-2.
  13. Hartwich, Jens; Bölscher, Jens; Schulte, Achim (2014-09-19). "Impact of short-rotation coppice on water and land resources". Water International. 39 (6): 813–825. doi:10.1080/02508060.2014.959870. ISSN 0250-8060.
  14. Hartwich, Jens; Schmidt, Markus; Bölscher, Jens; Reinhardt-Imjela, Christian; Murach, Dieter; Schulte, Achim (2016-07-11). "Hydrological modelling of changes in the water balance due to the impact of woody biomass production in the North German Plain". Environmental Earth Sciences. 75 (14): 1–17. doi:10.1007/s12665-016-5870-4. ISSN 1866-6280.
  15. Rowe, RL; Street, NR; Taylor, G (2009). "Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK" (PDF). Renewable and Sustainable Energy Reviews. 13 (1): 271–290. doi:10.1016/j.rser.2007.07.008. Retrieved 2011-03-17.
  16. Short rotation coppice establishment
  17. Mola-Yudego, B; Pelkonen, P. (2011). "Pulling effects of district heating plants on the adoption and spread of willow plantations for biomass: The power plant In Enköping (Sweden)". Biomass and Bioenergy (PDF). 35 (7): 2986–2992. doi:10.1016/j.biombioe.2011.03.040.
This article is issued from Wikipedia - version of the 8/9/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.