Isotopes of krypton

There are 33 known isotopes of krypton (Kr) with atomic mass numbers from 69 through 101.[1] Naturally occurring krypton is made of six stable isotopes, two of which might theoretically be slightly radioactive, plus traces of radioisotopes that are produced by cosmic rays in the atmosphere.

The spectral signature of krypton can be observed to have several very sharp lines. When krypton is placed into an electric discharge tube, it emits visible light with a distinctive orange-red color.

Krypton-86 was formerly used to define the meter from 1960 until 1983, when the definition of the meter was based on the wavelength of the 605 nm (orange) spectral line of a krypton-86 atom.

Radioactive krypton-81 is the product of reactions with cosmic rays that strike the atmosphere, along with some of the other isotopes of krypton. Krypton-81 has a half-life of about 229,000 years.

Krypton-81 has been used for dating old (50,000- to 800,000-year-old) groundwater.[2] Krypton-85 is a radioisotope of krypton that has a half-life of about 10.75 years. This isotope is produced by the nuclear fission of uranium and plutonium in nuclear weapons testing and in nuclear reactors, as well as by cosmic rays. An important goal of the Limited Nuclear Test Ban Treaty of 1963 was to eliminate the release of such radioisotopes into the atmosphere, and since 1963 much of that krypton-85 has had time to decay. However, it is inevitable that krypton-85 is released during the reprocessing of fuel rods from nuclear reactors.

The atmospheric concentration of krypton-85 around the North Pole is about 30 percent higher than that at the Amundsen–Scott South Pole Station because nearly all of the world's nuclear reactors and all of its major nuclear reprocessing plants are located in the Northern Hemisphere, and also well-north of the equator.[3] To be more specific, those nuclear reprocessing plants with significant capacities are located in the United States, the United Kingdom, the French Republic, the Russian Federation, Mainland China (PRC), Japan, India, and Pakistan. See the article on nuclear reprocessing for more information.

All of the other radioisotopes of krypton have half-lives of less than one day, except for krypton-79, which has a half-life of about 35.0 hours. This isotope decays by the emission of positrons and thus becoming bromine.

Relative atomic mass: 83.798.

Table

nuclide
symbol
Z(p)7 N(n)  
isotopic mass (u)
 
half-life decay
mode(s)[4][n 1]
daughter
isotope(s)[n 2]
nuclear
spin
representative
isotopic
composition
(mole fraction)
range of natural
variation
(mole fraction)
excitation energy
69Kr 36 33 68.96518(43)# 32(10) ms β+ 69Br 5/2−#
70Kr 36 34 69.95526(41)# 52(17) ms β+ 70Br 0+
71Kr 36 35 70.94963(70) 100(3) ms β+ (94.8%) 71Br (5/2)−
β+, p (5.2%) 70Se
72Kr 36 36 71.942092(9) 17.16(18) s β+ 72Br 0+
73Kr 36 37 72.939289(7) 28.6(6) s β+ (99.32%) 73Br 3/2−
β+, p (.68%) 72Se
73mKr 433.66(12) keV 107(10) ns (9/2+)
74Kr 36 38 73.9330844(22) 11.50(11) min β+ 74Br 0+
75Kr 36 39 74.930946(9) 4.29(17) min β+ 75Br 5/2+
76Kr 36 40 75.925910(4) 14.8(1) h β+ 76Br 0+
77Kr 36 41 76.9246700(21) 74.4(6) min β+ 77Br 5/2+
78Kr 36 42 77.9203648(12) Observationally Stable[n 3] 0+ 0.00355(3)
79Kr 36 43 78.920082(4) 35.04(10) h β+ 79Br 1/2−
79mKr 129.77(5) keV 50(3) s 7/2+
80Kr 36 44 79.9163790(16) Stable 0+ 0.02286(10)
81Kr[n 4] 36 45 80.9165920(21) 2.29(11)×105 y EC 81Br 7/2+ trace
81mKr 190.62(4) keV 13.10(3) s IT (99.975%) 81Kr 1/2−
EC (.025%) 81Br
82Kr 36 46 81.9134836(19) Stable 0+ 0.11593(31)
83Kr[n 5] 36 47 82.914136(3) Stable 9/2+ 0.11500(19)
83m1Kr 9.4053(8) keV 154.4(11) ns 7/2+
83m2Kr 41.5569(10) keV 1.83(2) h IT 83Kr 1/2−
84Kr[n 5] 36 48 83.911507(3) Stable 0+ 0.56987(15)
84mKr 3236.02(18) keV 1.89(4) µs 8+
85Kr[n 5] 36 49 84.9125273(21) 10.776(3) y β 85Rb 9/2+ trace
85m1Kr 304.871(20) keV 4.480(8) h β (78.6%) 85Rb 1/2−
IT (21.4%) 85Kr
85m2Kr 1991.8(13) keV 1.6(7) µs
[1.2(+10-4) µs]
(17/2+)
86Kr[n 6][n 5] 36 50 85.91061073(11) Observationally Stable[n 7] 0+ 0.17279(41)
87Kr 36 51 86.91335486(29) 76.3(5) min β 87Rb 5/2+
88Kr 36 52 87.914447(14) 2.84(3) h β 88Rb 0+
89Kr 36 53 88.91763(6) 3.15(4) min β 89Rb 3/2(+#)
90Kr 36 54 89.919517(20) 32.32(9) s β 90mRb 0+
91Kr 36 55 90.92345(6) 8.57(4) s β 91Rb 5/2(+)
92Kr 36 56 91.926156(13) 1.840(8) s β (99.96%) 92Rb 0+
β, n (.033%) 91Rb
93Kr 36 57 92.93127(11) 1.286(10) s β (98.05%) 93Rb 1/2+
β, n (1.95%) 92Rb
94Kr 36 58 93.93436(32)# 210(4) ms β (94.3%) 94Rb 0+
β, n (5.7%) 93Rb
95Kr 36 59 94.93984(43)# 114(3) ms β 95Rb 1/2(+)
96Kr 36 60 95.94307(54)# 80(7) ms β 96Rb 0+
97Kr 36 61 96.94856(54)# 63(4) ms β 97Rb 3/2+#
β, n 96Rb
98Kr 36 62 97.95191(64)# 46(8) ms 0+
99Kr 36 63 98.95760(64)# 40(11) ms (3/2+)#
100Kr 36 64 99.96114(54)# 10# ms
[>300 ns]
0+
101Kr [n 8] 36 65 unknown >635 ns β, 2n 99Rb unknown
β, n 100Rb
β 101Rb
  1. Abbreviations:
    EC: Electron capture
    IT: Isomeric transition
  2. Bold for stable isotopes, bold italics for nearly-stable isotopes (half-life longer than the age of the universe)
  3. Believed to decay by β+β+ to 78Se with a half-life of more than >1.1×1020 years
  4. Used to date groundwater
  5. 1 2 3 4 Fission product
  6. Formerly used to define the meter
  7. Believed to decay by ββ to 86Sr
  8. New isotope.

Notes

References

  1. "Chart of Nuclides". Brookhaven National Laboratory.
  2. N. Thonnard; L. D. MeKay; T. C. Labotka (2001). "Development of Laser-Based Resonance Ionization Techniques for 81-Kr and 85-Kr Measurements in the Geosciences" (PDF). University of Tennessee, Institute for Rare Isotope Measurements. pp. 4–7.
  3. "Resources on Isotopes". U.S. Geological Survey. Retrieved 2007-03-20.
  4. "Universal Nuclide Chart". nucleonica. (registration required (help)).

External links

Isotopes of bromine Isotopes of krypton Isotopes of rubidium
Table of nuclides
This article is issued from Wikipedia - version of the 11/20/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.