Very (Martian crater)

Eastern side of Very Crater, as seen by CTX camera (on Mars Reconnaissance Orbiter).
Channel on floor of Very Crater, as seen by CTX camera (on Mars Reconnaissance Orbiter). Gullies are also visible in a smaller crater to the south (bottom). Note this is an enlargement of the previous image of Very.

Very is a crater on Mars located south of the planet's equator in the heavily cratered highlands of Terra Sirenum in the Phaethontis quadrangle at 49.6°S and 177.1°W. Its name was approved in 1973, and it was named after Frank Washington Very.[1] On the basis of their form, aspects, positions, and location amongst and apparent interaction with features thought to be rich in water ice, many researchers believed that the processes carving the gullies involve liquid water. However, this remains a topic of active research. As soon as gullies were discovered,[2] researchers began to image many gullies over and over, looking for possible changes. By 2006, some changes were found.[3] Later, with further analysis it was determined that the changes could have occurred by dry granular flows rather than being driven by flowing water.[4][5][6] With continued observations many more changes were found in Gasa Crater and others.[7] With more repeated observations, more and more changes have been found; since the changes occur in the winter and spring, experts are tending to believe that gullies were formed from dry ice. Before-and-after images demonstrated the timing of this activity coincided with seasonal carbon-dioxide frost and temperatures that would not have allowed for liquid water. When dry ice frost changes to a gas, it may lubricate dry material to flow especially on steep slopes.[8][9][10] In some years frost, perhaps as thick as 1 meter.

See also

References

  1. "Gazetteer of Planetary Nomenclature | Very". usgs.gov. International Astronomical Union. Retrieved 5 March 2015.
  2. Malin, M., Edgett, K. 2000. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330–2335.
  3. Malin, M., K. Edgett, L. Posiolova, S. McColley, E. Dobrea. 2006. Present-day impact cratering rate and contemporary gully activity on Mars. Science 314, 1573_1577.
  4. Kolb, et al. 2010. Investigating gully flow emplacement mechanisms using apex slopes. Icarus 2008, 132-142.
  5. McEwen, A. et al. 2007. A closer look at water-related geological activity on Mars. Science 317, 1706-1708.
  6. Pelletier, J., et al. 2008. Recent bright gully deposits on Mars wet or dry flow? Geology 36, 211-214.
  7. NASA/Jet Propulsion Laboratory. "NASA orbiter finds new gully channel on Mars." ScienceDaily. ScienceDaily, 22 March 2014. www.sciencedaily.com/releases/2014/03/140322094409.htm
  8. http://www.jpl.nasa.gov/news/news.php?release=2014-226
  9. http://hirise.lpl.arizona.edu/ESP_032078_1420
  10. http://www.space.com/26534-mars-gullies-dry-ice.html?cmpid=557882
Wikimedia Commons has media related to Newton (Martian crater).
This article is issued from Wikipedia - version of the 9/28/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.