Mobile High-Definition Link

Mobile High-Definition Link
Founders SONY, Nokia, Samsung, Silicon Image, and Toshiba
Headquarters Sunnyvale, California, United States
Key people
Gordon Hands
(President)
Bill Altmann
(Technical Editor)
Products Adapters, automotive accessories, AV receivers, Blu-ray players, cables, DTVs, media sticks, monitors, projectors, smartphones, tablets, TV accessories

Mobile High-Definition Link (MHL) is an industry standard for a mobile audio/video interface that allows one to connect mobile phones, tablets, and other portable consumer electronics (CE) devices to high-definition televisions (HDTVs) and audio receivers. MHL-enabled products include adapters, automotive accessories, AV receivers, Blu-ray Disc players, cables, DTVs, media sticks, monitors, projectors, smartphones, tablets, TV accessories, and more. MHL is a consortium made up of major companies in the mobile and CE industries, including SONY, Nokia, Samsung, Silicon Image, and Toshiba.

History

Silicon Image, one of the founding companies of the HDMI standard, originally demonstrated a mobile interconnect at the January 2008 Consumer Electronics Show (CES), based on its transition-minimized differential signaling (TMDS) technology.[1] This interface was termed "Mobile High Definition Link" at the time of the demonstration, and is a direct precursor of the implementation announced by the MHL Consortium. The company is quoted as saying it did not ship that original technology in any volume, but used it as a way to get a working group started.[2]

The working group was announced in September 2009,[3] and the MHL Consortium founded in April 2010 by SONY, Nokia, Samsung, Silicon Image, and Toshiba. The MHL specification version 1.0 was released in June 2010 and May 2011 marked the first retail availability of MHL-enabled products.

An abridged version of the specification was made available for download on April 14, 2010.[4] MHL specification version 1.0 was released in June 2010.[5] The Compliance Test Specification (CTS) was announced on December 21, 2010.[6]

MHL announced in 2014 that more than half a billion MHL-capable products had been shipped since the standard was created.[7]

Overview

MHL was originally intended for mobile devices such as smartphones and tablets.

To better accommodate the needs of mobile devices, MHL differs from HDMI as follows.

Versions

MHL 1 and MHL 2

MHL 3

On August 20, 2013, MHL announced its 3 specification to address the latest consumer requirements for connecting a mobile device to displays, marking major advancements in the areas of audio and video transmission over an MHL link. The first devices to include the specification are the Sony Xperia Tablet Z2 and the Sony Xperia Z2. At Mobile World Congress 2014 Silicon Image demoed MHL 3 powered by its SiI8620 transmitter chip. Features of the MHL 3.0 specification include:

superMHL

On January 6, 2015, MHL announced the superMHL specification,[9] the next-generation of MHL technology for CE and mobile devices. Features of superMHL include:

The superMHL standard makes use of one to six A/V lanes with each lane operating at 6Gbit/s. Four connectors have been detailed with their various numbers of A/V lanes supported in the standard:

superMHL may also use a variety of source and sink connectors:

superMHL supports delivery of video up to 8K 120fps using 6 lanes (e.g. superMHL connector), 8K 60fps using 4 lanes (e.g. USB Type-C / superMHL connector) and 4K 60fps using 1 lane (e.g. micro-USB / HDMI Type-A / USB Type-C / superMHL connector).[10] The superMHL standard makes use of VESA's Display Stream Compression (DSC) standard version 1.1 to allow for 2.0x, 2.5x, or 3.0x compression. This allows a superMHL source-to-sink connection to transfer 108Gbit/s of visually lossless (mathematically lossy) data.

The following resolutions and frame rates are supported by the superMHL standard (other resolutions and frame rates may be supported):

The following pixel encodings and color spaces are supported by the superMHL standard:

The bandwidth efficiency of superMHL is considered superior to other display interfaces (e.g. HDMI, DisplayPort). Other interfaces needs around 10 Gbit/s bandwidth for supporting 4K 30fps (basic UHD) video, but superMHL supports 4K 60fps using only 6 Gbit/s. DisplayPort uses 32.4 Gbit/s to transmit 8K 30fps video, but superMHL delivers 8K 60fps using only 24 Gbit/s. The other display interfaces probably have to use an active cable to support bandwidth for higher resolution video. superMHL can still use a passive cable and deliver the better resolution video. This reduces the cost of the cable a lot. The superMHL connector is considered to be futuristic than the HDMI or DisplayPort connectors. superMHL connector supports more A/V lanes, it has more pins and it is reversible (like USB Type-C). superMHL connector supports future bandwidth expansion and it can deliver more power than other connectors. While USB Type-C is considered to be a small form factor connector, the superMHL connector has a form factor comparable to HDMI Type-A connector. This helps in easier connector and cable construction.

MHL Alternate Mode for USB Type-C

On November 17, 2014 - MHL, LLC released[11] MHL Alternate Mode for USB Type-C connector standard. This supports MHL 1, 2, 3 and superMHL specifications for delivery of audio, video, data, and power over USB Type-C port. The Alt Mode allows connecting MHL enabled source devices to MHL display devices through the USB Type-C port. USB Type-C port can be used on MHL source/display devices. All MHL/superMHL features are supported on MHL Alt Mode. MHL Alt Mode enables devices to support simultaneous MHL audio/video plus USB 2.0 and/or USB 3.1 Gen 1 or Gen 2 data and power charging over the USB Type-C connector.

Depending on the bandwidth requirement MHL Alt Mode can use variable number of TMDS channels/lanes, The Alt Mode allows delivery of video up to 4K 60fps using only 1 lane, 4K 120fps using 2 lanes or 8K 60fps using 4 lanes. MHL Alt Mode sends 1 to 4 TMDS channels over super-speed data pins and the (e)CBUS signal on 1 side-band pin of the USB Type-C connector. Compared to other USB Type-C Alt Modes, this takes less number of pins on the connector and delivers higher video resolutions and frame rates. Other than the usual functionality, bi-directional CBUS control-channel will be also used as the pixel clock for resolutions above 1080p 60fps. At a max pixel clock of 600 MHz, each of the TMDS channel will run at 6Gbit/s. When less than 4 TMDS channels are used, USB 3.1 will be supported, other wise USB 2.0 has to be used for data transfer. The USB Power Delivery (USB-PD) standard enables the devices to draw up to 100W power over USB Type-C port.

In common MHL Alt Mode implementations on mobile/tablet/laptops, the video from the GPU will be converted to MHL signal by using a MHL transmitter chip. Popular transmitter chips accepts video in MIPI (DSI/DPI) or HDMI format and covert it to MHL format. The USB Type-C port controller functions as a switch/mux which passes through native MHL signal to the external devices. The dock/display devices may use a MHL bridge chip to covert the MHL signal to HDMI signal format and pass it to the display sink. Some display devices has the capability to directly process the MHL signal on the display sink.

Comparison with SlimPort / Mobility DisplayPort (MyDP)

SlimPort is a proprietary alternative to MHL, based on the DisplayPort standard integrated into common microUSB ports and supports up to 1080p60 or 1080p30 with 3D content over HDMI 1.4 (up to 5.4 Gbit/s of bandwidth), in addition to support for DVI, VGA (up to 1920 x 1080 at 60 Hz), and DisplayPort.[12] Implementers of SlimPort may be subject to the MPEG-LA patent pool license for DisplayPort. On March 5, 2015, the MPEG LA announced their DisplayPort license, which is US$0.20 per DisplayPort product.

Connectors

Not all micro USB 2.0 ports are identical. Compare connectors for original Galaxy Note with the Note II.

Standard Micro-USB-to-HDMI adapter (five-pin)

The first implementations use the most popular mobile connection (micro USB) and the most popular TV connection (HDMI). Other than the physical connectors, no USB or HDMI technology is being used. Exclusively MHL signaling is used through the connectors and over the cable.

Samsung Micro-USB-to-HDMI adapter and tip (eleven-pin)

The Samsung Galaxy S III, and later Galaxy Note II and Galaxy S4, use an 11-pin connector and the six additional connector pins in order to achieve functional improvements over the 5-pin design (like simultaneous USB-OTG use[13]). However, if consumers have a standard MHL-to-HDMI adapter all they need to purchase is a tip. With the launch of the Samsung Galaxy S4, Samsung also released a Samsung 2.0 smart adapter with a built-in 11-pin connector. The first generation Samsung MHL 2.0 smart adapter released with the Galaxy S III requires external power and is able to work with HDMI TVs at 1080p at 24 Hz.[14] The second generation adapter released with the Galaxy S4 can output 1080p at 60 Hz and does not need external power.

MHL passive cable

Passive cables allow consumers to connect an MHL-enabled device directly to an MHL TV and do not require external power. Unlike older MHL adapters and cables, the passive cable simultaneously charges the cell phone battery while mirroring.

USB Type-C

Main article: USB Type-C

Using MHL Alternate Mode, USB Type-C ports are used on MHL source or display devices. USB Type-C is a totally reversible connector. The USB Type-C connector is used on active devices like mobile/laptop docks, which converts it to other video formats (e.g. HDMI, DisplayPort, VGA, DVI). The USB Type-C connector is also used on passive cables with an HDMI/USB Type-C/superMHL connector on the other end.

superMHL (32-pin)

On January 6, 2015, MHL introduced the new reversible superMHL connector. This 32 pin connector can carry concurrent video, data and power charging all in a slim, consumer-friendly form factor. A reversible design means that consumers don't have to worry about the plug's orientation or the cable's direction.

Announcements and products

See also

References

  1. "HDMI plugs into cameras, cellphones". EETimes.com. January 8, 2008. Retrieved 2010-04-14.
  2. "Consortium backs mobile interface for high def video". EETimes.com. EE Times. April 14, 2010. Retrieved 2010-04-14.
  3. "Leading Companies Form Mobile High-Definition Interface Working Group to Drive Industry Standard for Mobile Wired Connectivity" (Press release). Silicon Image. September 28, 2009. Archived from the original on 2011-07-16. Retrieved 2009-09-30.
  4. "Adopter Information". MHL, LLC. June 30, 2010. Retrieved 2010-06-30.
  5. "MHL 1.0 SPECIFICATION AND ADOPTER AGREEMENT NOW AVAILABLE". MHL, LLC. June 30, 2010. Retrieved 2010-06-30.
  6. "MHL CONSORTIUM RELEASES COMPLIANCE TEST SPECIFICATION TO GROWING ADOPTER BASE". MHL, LLC. December 21, 2010. Retrieved 2010-12-22.
  7. "MHL Consortium Announces More Than Half A Billion MHL Products Have Shipped Worldwide" (Press release). MHL Consortium. 24 February 2014. Retrieved 9 January 2016.
  8. 1 2 "MHL High-definition Link". YouTube. February 15, 2011. Retrieved 2011-02-15.
  9. superMHL Specification Version 1.0: Experience Beyond Resolution, MHL Consortium
  10. 1 2 "MHL Alt Mode: Optimizing Consumer Video Transmission" (PDF).
  11. "MHL RELEASES ALTERNATE MODE FOR NEW USB TYPE-C CONNECTOR". mhltech.org. Retrieved 2014-11-20.
  12. http://www.slimportconnect.com/support/
  13. "Galaxy S3 MHL explanation".
  14. "MHL 2.0 HDTV Smart Adapter".
  15. "Silicon Image Unveils First MHL Products". Silicon Image. October 4, 2010. Retrieved 2011-02-15.
  16. "LG Nitro HD Delivers First True High-Definition Experience for AT&T Customers" (Press release). AT&T Wireless. November 28, 2011. Retrieved 2011-11-28.
  17. "WORLD'S FIRST HD LTE SMARTPHONE ANNOUNCED IN CANADA" (Press release). LG Electronics. November 8, 2011. Retrieved 2011-11-08.
  18. "LG LAUNCHES OPTIMUS LTE, FIRST 4G HD SMARTPHONE IN KOREAN MARKET" (Press release). LG Electronics. October 4, 2011. Retrieved 2011-10-04.
  19. "The Samsung Galaxy S2 is Announced". MobileReview. February 15, 2011. Retrieved 2011-02-15.
  20. "Onkyo and Silicon Image Announce the World's First A/V Receivers Featuring InstaPrevue and MHL Technologies." (Press release). Onkyo US. December 21, 2011. Retrieved 2012-06-06.

External links

Wikimedia Commons has media related to Mobile High-Definition Link.
This article is issued from Wikipedia - version of the 11/30/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.