Balding–Nichols model

Balding-Nichols
Probability density function

Cumulative distribution function

Parameters (real)
(real)
For ease of notation, let
, and
Support
PDF
CDF
Mean
Median no closed form
Mode
Variance
Skewness
MGF
CF

In population genetics, the Balding–Nichols model is a statistical description of the allele frequencies in the components of a sub-divided population.[1] With background allele frequency p the allele frequencies, in sub-populations separated by Wright's FST F, are distributed according to independent draws from

where B is the Beta distribution. This distribution has mean p and variance Fp(1  p).[2]

The model is due to David Balding and Richard Nichols and is widely used in the forensic analysis of DNA profiles and in population models for genetic epidemiology.


Differential equation

References

  1. Balding, DJ; Nichols, RA (1995). "A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity.". Genetica. Springer. 96: 3–12. doi:10.1007/BF01441146. PMID 7607457.
  2. Alkes L. Price; Nick J. Patterson; Robert M. Plenge; Michael E. Weinblatt; Nancy A. Shadick; David Reich (2006). "Principal components analysis corrects for stratification in genome-wide association studies" (PDF). Nature Genetics. 38 (8): 904–909. doi:10.1038/ng1847. PMID 16862161.


This article is issued from Wikipedia - version of the 6/26/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.