Quarter 8-cubic honeycomb

quarter 8-cubic honeycomb
(No image)
TypeUniform 8-honeycomb
FamilyQuarter hypercubic honeycomb
Schläfli symbolq{4,3,3,3,3,3,3,4}
Coxeter diagram =
7-face typeh{4,36},
h6{4,36},
{3,3}×{32,1,1} duoprism
{31,1,1}×{31,1,1} duoprism
Vertex figure
Coxeter group×2 = [[3<sup>1,1</sup>,3,3,3,3,3<sup>1,1</sup>]]
Dual
Propertiesvertex-transitive

In seven-dimensional Euclidean geometry, the quarter 8-cubic honeycomb is a uniform space-filling tessellation (or honeycomb). It has half the vertices of the 8-demicubic honeycomb, and a quarter of the vertices of a 8-cube honeycomb.[1] Its facets are 8-demicubes h{4,36}, pentic 8-cubes h6{4,36}, {3,3}×{32,1,1} and {31,1,1}×{31,1,1} duoprisms.

See also

Regular and uniform honeycombs in 8-space:

Notes

  1. Coxeter, Regular and Semi-Regular Polytopes III, (1988), p318

References

Fundamental convex regular and uniform honeycombs in dimensions 3–10 (or 2-9)
Family / /
Uniform tiling {3[3]} δ3 hδ3 qδ3 Hexagonal
Uniform convex honeycomb {3[4]} δ4 hδ4 qδ4
Uniform 5-honeycomb {3[5]} δ5 hδ5 qδ5 24-cell honeycomb
Uniform 6-honeycomb {3[6]} δ6 hδ6 qδ6
Uniform 7-honeycomb {3[7]} δ7 hδ7 qδ7 222
Uniform 8-honeycomb {3[8]} δ8 hδ8 qδ8 133331
Uniform 9-honeycomb {3[9]} δ9 hδ9 qδ9 152251521
Uniform 10-honeycomb {3[10]} δ10 hδ10 qδ10
Uniform n-honeycomb {3[n]} δn hδn qδn 1k22k1k21
This article is issued from Wikipedia - version of the 10/31/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.