Quarter cubic honeycomb

Quarter cubic honeycomb
 
TypeUniform honeycomb
FamilyTruncated simplectic honeycomb
Quarter hypercubic honeycomb
Indexing[1] J25,33, A13
W10, G6
Schläfli symbolt0,1{3[4]} or q{4,3,4}
Coxeter-Dynkin diagram = =
Cell types{3,3}
(3.6.6)
Face types{3}, {6}
Vertex figure
(isosceles triangular antiprism)
Space groupFd3m (227)
Coxeter group×22, [[3[4]]]
Dualoblate cubille
(Trigonal trapezohedral honeycomb)
Propertiesvertex-transitive, edge-transitive

The quarter cubic honeycomb, quarter cubic cellulation or bitruncated alternated cubic honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of tetrahedra and truncated tetrahedra in a ratio of 1:1. It is called "quarter-cubic" because its symmetry unit – the minimal block from which the pattern is developed by reflections – consists of four such units of the cubic honeycomb.

It is vertex-transitive with 6 truncated tetrahedra and 2 tetrahedra around each vertex.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

It is one of the 28 convex uniform honeycombs.

The faces of this honeycomb's cells form four families of parallel planes, each with a 3.6.3.6 tiling.

Its vertex figure is an isosceles antiprism: two equilateral triangles joined by six isosceles triangles.

John Horton Conway calls this honeycomb a truncated tetrahedrille, and its dual oblate cubille.

The vertices and edges represent a Kagome lattice in three dimensions.[2]

Construction

The quarter cubic honeycomb can be constructed in slab layers of truncated tetrahedra and tetrahedral cells, seen as two trihexagonal tilings. Two tetrahedra are stacked by a vertex and a central inversion. In each trihexagonal tiling, half of the triangles belong to tetrahedra, and half belong to truncated tetrahedra. These slab layers must be stacked with tetrahedra triangles to truncated tetrahedral triangles to construct the uniform quarter cubic honeycomb. Slab layers of hexagonal prisms and triangular prisms can be alternated for elongated honeycombs, but these are also not uniform.


trihexagonal tiling:

Symmetry

Cells can be shown in two different symmetries. The reflection generated form represented by its Coxeter-Dynkin diagram has two colors of truncated cuboctahedra. The symmetry can be doubled by relating the pairs of ringed and unringed nodes of the Coxeter-Dynkin diagram, which can be shown with one colored tetrahedral and truncated tetrahedral cells.

Two uniform colorings
Symmetry , [3[4]] ×2, [[3[4]]]
Space group F43m (216) Fd3m (227)
Coloring
Vertex figure
Vertex
figure
symmetry
C3v
[3]
(*33)
order 6
D3d
[2+,6]
(2*3)
order 12

The subset of hexagonal faces of this honeycomb contains an regular skew apeirohedron {6,6|3}.

Four sets of parallel planes of trihexagonal tilings exist throughout this honeycomb.

This honeycomb is one of five distinct uniform honeycombs[3] constructed by the Coxeter group. The symmetry can be multiplied by the symmetry of rings in the Coxeter–Dynkin diagrams:

The Quarter cubic honeycomb is related to a matrix of 3-dimensional honeycombs: q{2p,4,2q}

See also

Wikimedia Commons has media related to Quarter cubic honeycomb.

References

  1. For cross-referencing, they are given with list indices from Andreini (1-22), Williams(1-2,9-19), Johnson (11-19, 21-25, 31-34, 41-49, 51-52, 61-65), and Grünbaum(1-28).
  2. "Physics Today article on the word kagome".
  3. , A000029 6-1 cases, skipping one with zero marks
Fundamental convex regular and uniform honeycombs in dimensions 3–10 (or 2-9)
Family / /
Uniform tiling {3[3]} δ3 hδ3 qδ3 Hexagonal
Uniform convex honeycomb {3[4]} δ4 hδ4 qδ4
Uniform 5-honeycomb {3[5]} δ5 hδ5 qδ5 24-cell honeycomb
Uniform 6-honeycomb {3[6]} δ6 hδ6 qδ6
Uniform 7-honeycomb {3[7]} δ7 hδ7 qδ7 222
Uniform 8-honeycomb {3[8]} δ8 hδ8 qδ8 133331
Uniform 9-honeycomb {3[9]} δ9 hδ9 qδ9 152251521
Uniform 10-honeycomb {3[10]} δ10 hδ10 qδ10
Uniform n-honeycomb {3[n]} δn hδn qδn 1k22k1k21
This article is issued from Wikipedia - version of the 7/1/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.