Dimethylethanolamine

Dimethylethanolamine
Skeletal formula of dimethylethanolamine
Ball-and-stick model of the dimethylethanolamine molecule
Names
IUPAC name
2-(Dimethylamino)ethanol
Other names
  • Deanol
  • Dimethylamino ethanol
Identifiers
108-01-0 YesY
3D model (Jmol) Interactive image
Abbreviations DMAE, DMEA
1209235
ChEBI CHEBI:271436 N
ChEMBL ChEMBL1135 N
ChemSpider 13854944 N
ECHA InfoCard 100.003.221
EC Number 203-542-8
KEGG D07777 N
MeSH Deanol
PubChem 7902
RTECS number KK6125000
UNII 2N6K9DRA24 YesY
UN number 2051
Properties
C4H11NO
Molar mass 89.14 g·mol−1
Appearance Colourless liquid
Odor Fishy, ammoniacal
Density 890 mg mL−1
Melting point −59.00 °C; −74.20 °F; 214.15 K
Boiling point 134.1 °C; 273.3 °F; 407.2 K
log P −0.25
Vapor pressure 816 Pa (at 20 °C)
Acidity (pKa) 9.23 (at 20 °C)[1]
Basicity (pKb) 4.77 (at 20 °C)
1.4294
Pharmacology
N06BX04 (WHO)
Hazards
GHS pictograms
GHS signal word DANGER
H226, H302, H312, H314, H332
P280, P305+351+338, P310
C
R-phrases R10, R20/21/22, R34
S-phrases (S1/2), S25, S26, S36/37/39, S45
Flash point 39 °C (102 °F; 312 K)
Explosive limits 1.4–12.2%
Lethal dose or concentration (LD, LC):
  • 1.214 g kg−1 (dermal, rabbit)
  • 2 g kg−1 (oral, rat)
Related compounds
Related alkanols
Related compounds
Diethylhydroxylamine
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Dimethylaminoethanol and dimethylethanolamine (DMAE and DMEA respectively), with deanol, are common names for 2-(dimethylamino)ethanol.

Chemical structure and properties

This compound has tertiary amine and primary alcohol groups as functional groups.. The alcohol functionality, in combination with the amine and its low molecular weight imparts water solubility on the compound, and makes ester derivatives possible; the amine functionality gives the compound its alkaline character, and allows for formulation of salts of the compound.

Safety and Toxicity

Although preliminary, it seems that DMAE may aggravate or induce the formation of neural tube defects, as evidenced by in vitro studies on mouse embryonic cells.[2] Under normal conditions, rat embryos uptake choline and convert it into phosphatidylcholine(PC) as an active substrate. DMAE supplementation seems to replace choline usage when it is present due to higher affinity and competition but fails to convert into PC due to an apparent lack of expression of the enzyme phosphatidylethanolamine methyltransferase (PeMT) in embryos. This enzyme is absolutely necessary for the conversion of Phosphatidylethanolamine into PC.[3]

Essentially, DMAE competitively inhibits Choline uptake during the first few days of neural tube formation (1–10 days after impregnation), but the embryo is not yet able to use DMAE as well as an adult due to an immature CDP-choline metabolic pathway and underexpression of key enzymes.

These mechanisms should not occur in adult cells due to the activity of the PeMT enzyme and a mature CDP-choline metabolic enzyme pathway.

Uses

Its characteristics arise from its chemical features as well as from its overall structural similarity to chemical compounds involved in primary metabolism and neurophysiology.

Biochemical roles

According to WebMD:

"Deanol is a chemical that is involved in a series of reactions that form acetylcholine, a chemical that is found in the brain and other areas of the body. Acetylcholine is a "neurotransmitter" that helps nerve cells communicate.

Deanol is used for treating attention deficit-hyperactivity disorder (ADHD), Alzheimer's disease, autism, and a movement disorder called tardive dyskinesia. It is also used for improving memory and mood; boosting thinking skills and intelligence; and increasing physical energy, oxygen efficiency, athletic performance, and muscle reflexes. It is also used for preventing aging or liver spots, improving red blood cell function, and extending life span.

Deanol is applied to the skin for reducing signs of aging, particularly loose or sagging skin.

Deanol was previously sold by Riker Laboratories as the prescription drug Deaner. It was prescribed for the management of children with behavior problems and learning difficulties. Deanol is not an approved food additive in the U.S., nor is it an orphan drug, as some advertising suggests.[4][5] Dimethylaminoethanol serves as a precursor of choline in the liver. In the brain, DMAE is incorporated into phospholipids, as phosphatidyldimethylethanolamine (PDME), which can then be converted, via N-methylation, to phosphatidylcholine. As a component of nerve membranes, PDME may increase fluidity and permeability, and acting as an antioxidant.

Topical Use

DMAE, in the form of facial cream, is being looked at for improving skin quality for aging skin when applied as a 3% facial cream.[4] It shows benefits in improving the appearance of coarse wrinkles, under-eye dark circles, nasolabial folds, sagging neck skin, and neck firmness and is generally very well tolerated.

Most notably, DMAE as a facial gel increases skin firmness.[6][7]

Neurology

Rheology

DMAE (0.6% in vitro) appears to protect from iron-induced oxidation and subsequent protein cross-linking, thought to preserve membrane fluidity via anti-oxidative effects,[8] either directly or by preventing formation of Nitroxyl radicals (hydroxyl radical binding with hydroxyproline) by non-oxidatively sequestering hydroxyl radicals.[9]

Alzheimer's Disease

V0191 (DMAE Pyroglutamate) in 55-90 year old persons (mean age 72.2) with mild cognitive impairment taking 1500mg of the supplement daily at breakfast over 24 weeks noted that although there was a trend to more response with treatment than placebo (defined as more than a 4 point improvement on the ADAS-cog rating scale), there were no statistically significant improvements nor improvement on global assessments.[10]

Tardive Dyskinesia

DMAE supplementation has been shown in some studies to show a small, albeit nonsignificant, positive trend for symptoms in tardive dyskinesia ,[11] but typically it is seen as an ineffective treatment.[12][13]

Industrial uses

Industrial uses include as a bulk chemical in water purification, as a fine chemical precursor in pharmaceutical and other organic syntheses, and as an additive in a variety of applications, including with resins and coatings. There is expanding interest in use of DMAE as a nutraceutical, and it is has been tested as a possible therapeutic agent related to a variety of cholinergic functions.

DMAE is used in bulk quantities for water treatment, in the coatings industry, and as a curing agent for polyurethanes and epoxy resins. It is also used in the chemical synthesis of dyestuffs, pharmaceuticals, emulsifiers, textile auxiliaries, as an additive to paint removers and amino resins, and as an additive to boiler water to provide corrosion resistance. For instance, 2-dimethylaminoethyl chloride hydrochloride is synthesized from dimethylaminoethanol, and serves as an intermediate that is widely used for the manufacture of pharmaceuticals.[14]

DMAE forms a number of salts with melting points below room temperature ionic liquids, (e.g. N,N-dimethylethanolammonium acetate and N,N-dimethylethanolammonium octanoate), which can be used in applications where alternatives to conventional solvents are required.[15]

Neutraceutical uses

The bitartrate salt of DMAE, i.e. 2-dimethylaminoethanol (+)-bitartrate, is sold as a dietary supplement.[16] It is a white powder providing 37% DMAE.[17]

Further reading (secondary sources)

Further reading (primary sources)

See also

References

  1. Littel, RJ; Bos, M; Knoop, GJ (1990). "Dissociation constants of some alkanolamines at 293, 303, 318, and 333 K". Journal of Chemical and Engineering Data. 35 (3): 276–77. doi:10.1021/je00061a014. INIST:19352048.
  2. Fisher MC, Zeisel SH, Mar MH, Sadler TW (2002). "Perturbations in choline metabolism cause neural tube defects in mouse embryos in vitro". FASEB Journal. 16 (6): 619–21. doi:10.1096/fj.01-0564fje. PMID 11919173.
  3. Hirata F, Viveros OH, Diliberto EJ, Axelrod J (1978). "Identification and properties of two methyltransferases in conversion of phosphatidylethanolamine to phosphatidylcholine". Proceedings of the National Academy of Sciences of the United States of America. 75 (4): 1718–21. doi:10.1073/pnas.75.4.1718. PMC 392410Freely accessible. PMID 25437.
  4. 1 2 Grossman R (2005). "The role of dimethylaminoethanol in cosmetic dermatology". American Journal of Clinical Dermatology. 6 (1): 39–47. doi:10.2165/00128071-200506010-00005. PMID 15675889.
  5. Pfeiffer CC, Jenney EH, Gallagher W, Smith RP, Bevan W, Killam KF, Killam EK, Blackmore W (1957). "Stimulant effect of 2-dimethylaminoethanol; possible precursor of brain acetylcholine". Science. 126 (3274): 610–1. doi:10.1126/science.126.3274.61. PMID 13467254.
  6. Uhoda I, Faska N, Robert C, Cauwenbergh G, Piérard GE (2002). "Split face study on the cutaneous tensile effect of 2-dimethylaminoethanol (deanol) gel". Skin Research and Technology. 8 (3): 164–7. doi:10.1034/j.1600-0846.2002.10295.x. PMID 12236885.
  7. Tadini KA, Campos PM (2009). "In vivo skin effects of a dimethylaminoethanol (DMAE) based formulation". Die Pharmazie. 64 (12): 818–22. PMID 20095140.
  8. Nagy I, Nagy K (1980). "On the role of cross-linking of cellular proteins in aging". Mechanisms of Ageing and Development. 14 (1-2): 245–51. doi:10.1016/0047-6374(80)90124-4. PMID 7206814.
  9. Nagy I, Floyd RA (1984). "Electron spin resonance spectroscopic demonstration of the hydroxyl free radical scavenger properties of dimethylaminoethanol in spin trapping experiments confirming the molecular basis for the biological effects of centrophenoxine". Archives of Gerontology and Geriatrics. 3 (4): 297–310. doi:10.1016/0167-4943(84)90031-1. PMID 6099712.
  10. Dubois B, Zaim M, Touchon J, Vellas B, Robert P, Murphy MF, Pujadas-Navinés F, Rainer M, Soininen H, Riordan HJ, Kanony-Truc C (2012). "Effect of six months of treatment with V0191 in patients with suspected prodromal Alzheimer's disease". Journal of Alzheimer's Disease. 29 (3): 527–35. doi:10.3233/JAD-2012-111370. PMID 22330824.
  11. Tammenmaa IA, Sailas E, McGrath JJ, Soares-Weiser K, Wahlbeck K (2004). "Systematic review of cholinergic drugs for neuroleptic-induced tardive dyskinesia: a meta-analysis of randomized controlled trials". Progress in Neuro-psychopharmacology & Biological Psychiatry. 28 (7): 1099–107. doi:10.1016/j.pnpbp.2004.05.045. PMID 15610922.
  12. Jeste DV, Wyatt RJ (1982). "Therapeutic strategies against tardive dyskinesia. Two decades of experience". Archives of General Psychiatry. 39 (7): 803–16. doi:10.1001/archpsyc.1982.04290070037008. PMID 6131655.
  13. Soares KV, McGrath JJ (1999). "The treatment of tardive dyskinesia--a systematic review and meta-analysis". Schizophrenia Research. 39 (1): 1–16; discussion 17–8. doi:10.1016/S0920-9964(99)00021-3. PMID 10480663.
  14. Ashford's Dictionary of Industrial Chemicals, 3rd edition, 2011, ISBN 978-0-9522674-3-0, p. 3294.
  15. Sanders MW, Wright L, Tate L, Fairless G, Crowhurst L, Bruce NC, Walker AJ, Hembury GA, Shimizu S (2009). "Unexpected preferential dehydration of artemisinin in ionic liquids". The Journal of Physical Chemistry A. 113 (38): 10143–5. doi:10.1021/jp906436e. PMID 19722599.
  16. Karen E. Haneke & Scott Masten, 2002, "Dimethylethanolamine (DMAE) [108-01-0] and Selected Salts and Esters: Review of Toxicological Literature (Update)," Report on National Institute of Environmental Health Sciences Contract No. N01-ES-65402, November 2002, from Contractee Integrated Laboratory Systems, Research Triangle Park, North Carolina 27709, see , accessed 30 April 2015.
  17. Sigma Aldrich: Safety Data Sheet: 2-Dimethylaminoethanol (+)-bitartrate
This article is issued from Wikipedia - version of the 11/5/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.