Holism in science

Holism in science, or holistic science, is an approach to research that emphasizes the study of complex systems. This practice is in contrast to a purely analytic tradition (sometimes called reductionism) which aims to gain understanding of systems by dividing them into smaller composing elements and gaining understanding of the system through understanding their elemental properties. The holism-reductionism dichotomy is often evident in conflicting interpretations of experimental findings and in setting priorities for future research.

Overview

Holism in science is an approach to research that emphasizes the study of complex systems. Two central aspects are:

  1. the way of doing science, sometimes called "whole to parts," which focuses on observation of the specimen within its ecosystem first before breaking down to study any part of the specimen.
  2. the idea that the scientist is not a passive observer of an external universe; that there is no 'objective truth,' but that the individual is in a reciprocal, participatory relationship with nature, and that the observer's contribution to the process is valuable.

The term holistic science has been used as a category encompassing a number of scientific research fields (see some examples below). The term may not have a precise definition. Fields of scientific research considered potentially holistic do however have certain things in common.

First, they are multidisciplinary. Second, they are concerned with the behavior of complex systems. Third, they recognize feedback within systems as a crucial element for understanding their behavior.

The Santa Fe Institute, a center of holistic scientific research in the United States, expresses it like this:

The two dominant characteristics of the SFI research style are commitment to a multidisciplinary approach and an emphasis on the study of problems that involve complex interactions among their constituent parts. "Santa Fe Institute's Research Topics". Archived from the original on January 15, 2006. Retrieved January 22, 2006. 

Holistic science is controversial. One opposing view is that holistic science is pseudoscience because it does not rigorously follow the scientific method despite the use of a scientific-sounding language. Bunge (1983) and Lilienfeld et al. (2003) state that proponents of pseudoscientific claims, especially in organic medicine, alternative medicine, naturopathy and mental health, often resort to the “mantra of holism” to explain negative findings or to immunise their claims against testing. Stenger (1999) states that "holistic healing is associated with the rejection of classical, Newtonian physics. Yet, holistic healing retains many ideas from eighteenth and nineteenth century physics. Its proponents are blissfully unaware that these ideas, especially superluminal holism, have been rejected by modern physics as well".

Science journalist John Horgan has expressed this view in the book The End of Science 1996. He wrote that a certain pervasive model within holistic science, self-organized criticality, for example, "is not really a theory at all. Like punctuated equilibrium, self-organized criticality is merely a description, one of many, of the random fluctuations, the noise, permeating nature." By the theorists' own admissions, he said, such a model "can generate neither specific predictions about nature nor meaningful insights. What good is it, then?"

One of the reasons that holistic science attracts supporters is that it seems to offer a progressive, 'socio-ecological' view of the world, but Alan Marshall's book The Unity of Nature offers evidence to the contrary; suggesting holism in science is not 'ecological' or 'socially-responsive' at all, but regressive and repressive.

In the holistic approach of David Bohm, any collection of quantum objects constitutes an indivisible whole within an implicate and explicate order.[1][2] Bohm said there is no scientific evidence to support the dominant view that the universe consists of a huge, finite number of minute particles, and offered in its stead a view of undivided wholeness: "ultimately, the entire universe (with all its 'particles,' including those constituting human beings, their laboratories, observing instruments, etc) has to be understood as a single undivided whole, in which analysis into separately and independently existent parts has no fundamental status."[3]

Writers on holistic science

Degree programs

Perhaps due to the inherent multidisciplinary nature of holistic science, academic institutions have been slow to come forward with degree programs for it. Those that have done so include Schumacher College in the UK, which offers an MSc degree program in Holistic Science. Several universities have set up centers dedicated to one or more scientific fields where holistic approaches are common. These include the University of Michigan's Center for the Study of Complex Systems, Princeton University's Global Consciousness Project, Rice University's Cognitive Sciences Program, the London Metropolitan University's Centre for Postsecular Studies, and the Hang Seng Centre for Cognitive Studies in Sheffield.

There are also several non-university academic institutions and societies that are dedicated to holistic science or open to holistic ideas. For example, Santa Fe Institute, the Scientific and Medical Network (in Europe), the Pari Center for New Learning (in Italy), and the System Dynamics Society in Albany, New York. There is also the Institute of Noetic Sciences in Petaluma, California. Brazil has its Willis Harman House in São Paulo.

See also

Notes

  1. Richard Healey: Holism and Nonseparability in Physics (Spring 2009 Edition), Edward N. Zalta (ed.), first published July 22, 1999; substantive revision December 10, 2008, Stanford Encycopledia of Philosophy. Section: "Ontological Holism in Quantum Mechanics?" (retrieved June 3, 2011)
  2. David Bohm, Basil Hiley: The Undivided Universe: An Ontological Interpretation of Quantum Theory, Routledge, 1993, ISBN 0-415-06588-7.
  3. David Bohm, Wholeness and the Implicate Order, London: Routledge, 2002, p. 221

References

This article is issued from Wikipedia - version of the 11/12/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.