For other uses, see FLAC (disambiguation).
"Flac" redirects here. For anti-aircraft fire, see Anti-aircraft warfare.
Free Lossless Audio Codec
Developer(s) Xiph.Org Foundation, Josh Coalson, Erik de Castro Lopo
Initial release 20 July 2001 (2001-07-20)
Stable release
1.3.1 / 26 November 2014 (2014-11-26)
Operating system Cross-platform
Type Codec
License Command-line tools: GNU GPL
Libraries: BSD
Website xiph.org/flac
Free Lossless Audio Codec
Filename extension .flac
Internet media type audio/x-flac[1]
Magic number fLaC[2]
Type of format Audio
Standard xiph.org/flac/format.html
Open format? Yes[3]

FLAC (/ˈflæk/; Free Lossless Audio Codec) is an audio coding format for lossless compression of digital audio, and is also the name of the reference codec implementation. Digital audio compressed by FLAC's algorithm can typically be reduced to 50–60% of its original size[4] and decompress to an identical copy of the original audio data.

FLAC is an open format with royalty-free licensing and a reference implementation which is free software. FLAC has support for metadata tagging, album cover art, and fast seeking.

Since the introduction of FLAC in 2001, the number of products and services using the format has increased.[5] It is generally supported by more hardware devices than competing lossless compressed formats that may have intellectual property constraints.


Development was started in 2000 by Josh Coalson.[6] The bit-stream format was frozen when FLAC entered beta stage with the release of version 0.5 of the reference implementation on 15 January 2001. Version 1.0 was released on 20 July 2001.[6]

On 29 January 2003, the Xiph.Org Foundation and the FLAC project announced the incorporation of FLAC under the Xiph.org banner. Xiph.org is behind other free compression formats such as Vorbis, Theora, Speex and Opus.[6][7][8]

Version 1.3.0 was released on 26 May 2013, at which point development was moved to the Xiph.org git repository.[9]


The FLAC project consists of:

The specification of the stream format can be implemented by anyone without prior permission (Xiph.org reserves the right to set the FLAC specification and certify compliance), and neither the FLAC format nor any of the implemented encoding or decoding methods are covered by any patent. The reference implementation is free software. The source code for libFLAC and libFLAC++ is available under the BSD license, and the sources for flac, metaflac, and the plugins are available under the GNU General Public License.

In its stated goals, the FLAC project encourages its developers not to implement copy prevention features (DRM) of any kind.[10]


Audio sources encoded to FLAC are typically reduced to 50–60% of their original size, similar to other lossless formats.[4]

Source encoder


Compression levels

libFLAC uses a compression level parameter that varies from 0 (fastest) to 8 (smallest). The compressed files are always perfect, lossless representations of the original data. Although the compression process involves a tradeoff between speed and size, the decoding process is always quite fast and not very dependent on the level of compression.[13][14]

According to a WAV benchmark,[15] using higher rates above default level -5, takes considerably more time to encode without real gains in space savings.

Compression option Original Compressed Duration ratio Encoding Time Encoding Rate Decoding Time Decoding Rate
-0 2.030 GiB 1.435 GiB 03:18:21 70.67% 01:29 134x 01:24 141x
-5 2.030 GiB 1.334 GiB 03:18:21 65.72% (-4.95)% 03:44 53x (2.5x slower) 01:36 124x
-6 2.030 GiB 1.334 GiB 03:18:21 65.71% (-4.96, -0.01)% 03:51 52x (2.6x slower) 01:36 124x
-7 2.030 GiB 1.333 GiB 03:18:21 65.67% (-5, -0.04)% 07:47 25x (5.3x slower) 01:36 123x
-8 2.030 GiB 1.329 GiB 03:18:21 65.47% (-5.2, -0.2)% 10:17 19x (7x slower) 01:40 120x
-8 -Ax2 2.030 GiB 1.328 GiB 03:18:21 65.40% (-5.27, -0.07)% 16:39 12x (11x slower) 01:35 125x

Comparison to other formats

FLAC is specifically designed for efficient packing of audio data, unlike general-purpose lossless algorithms such as DEFLATE, which is used in ZIP and gzip. While ZIP may reduce the size of a CD-quality audio file by 10–20%, FLAC is able to reduce the size of audio data by 40–50% by taking advantage of the characteristics of audio.

The technical strengths of FLAC compared to other lossless formats lie in its ability to be streamed and decoded quickly, independent of compression level. In a comparison of compressed audio formats, FFmpeg's FLAC implementation was noted to have the fastest and most efficient embedded decoder of any modern lossless audio format.[16]

Since FLAC is a lossless scheme, it is suitable as an archive format for owners of CDs and other media who wish to preserve their audio collections. If the original media is lost, damaged, or worn out, a FLAC copy of the audio tracks ensures that an exact duplicate of the original data can be recovered at any time. An exact restoration from a lossy archive (e.g., MP3) of the same data is impossible. FLAC being lossless means it is highly suitable for transcoding e.g. to MP3, without the normally associated transcoding quality loss. A CUE file can optionally be created when ripping a CD. If a CD is read and ripped perfectly to FLAC files, the CUE file allows later burning of an audio CD that is identical in audio data to the original CD, including track order and pregap, but excluding CD-Text and other additional data such as lyrics and CD+G graphics.[11]

Adoption and implementations

The reference implementation of FLAC is implemented as the libFLAC core encoder & decoder library, with the main distributable program flac being the reference implementation of the libFLAC API. This codec API is also available in C++ as libFLAC++. The reference implementation of FLAC compiles on many platforms, including most Unix (such as Solaris, BSD) and Unix-like (including Linux), Microsoft Windows, BeOS, and OS/2 operating systems. There are build systems for autoconf/automake, MSVC, Watcom C, and Xcode. There is currently no multicore support in libFLAC.

FLAC playback support in portable audio devices and dedicated audio systems is limited compared to formats such as MP3[17] or uncompressed PCM. FLAC support is included by default in Windows 10, Android, Blackberry 10 and Jolla devices.

In 2014, several aftermarket mobile electronics companies introduced multimedia solutions that include support for FLAC. These include the NEX series from Pioneer Electronics and the VX404 and NX404 from Clarion.

The European Broadcasting Union (EBU) has adopted the FLAC format for the distribution of high quality audio over its Euroradio network.[18] The Windows operating system has supported native FLAC integration since the introduction of Windows 10.[19] The Android operating system has supported native FLAC playback since version 3.1.[20][21]

Among others the Pono music player and streaming service uses the FLAC format.[22][23] Bandcamp insists on a lossless format for uploading, and has FLAC as a download option.[24] Since January 2014 gog.com offers video game soundtracks in FLAC format as bonus.[25] The Wikimedia Foundation sponsored a free and open-source online ECMAScript FLAC tool for browsers supporting the required HTML5 features.[26]

See also


  1. Registration being sought as audio/flac
  2. Josh Coalson. "FLAC - format". Retrieved 4 April 2013. "fLaC", the FLAC stream marker in ASCII, meaning byte 0 of the stream is 0x66, followed by 0x4C 0x61 0x43
  3. "PlayOgg! - FSF - Free Software Foundation". 2010-03-17. Retrieved 2013-10-01.
  4. 1 2 "Comparison". FLAC. Retrieved 15 October 2013.
  5. https://xiph.org/flac/news.html
  6. 1 2 3 "News". FLAC. Retrieved 31 August 2009.
  7. Xiph.Org Foundation (29 January 2003). "FLAC Joins Xiph.org". Xiph.org Foundation. Retrieved 31 August 2009.
  8. Emmett Plant. "FLAC Joins Xiph!". Xiph.org Foundation. Archived from the original on 29 May 2008. Retrieved 31 August 2009.
  9. Xiph.Org Foundation. "FLAC – changelog". Xiph.org Foundation. Retrieved 15 October 2013.
  10. "Developers". FLAC. Retrieved 15 October 2013.
  11. 1 2 3 "FAQ". FLAC. Retrieved 23 September 2014.
  12. "Format". FLAC. Retrieved 15 October 2013.
  13. CUETools FLAC encoders comparison. CUETools Wiki. Retrieved 27 May 2013.
  14. Encoding Settings. JRiver Media Centre. Retrieved 27 May 2013.
  15. "Lossless Codec Comparison". Retrieved 26 November 2016.
  16. "Codec performance comparison". Hydrogenaudio Forums. Retrieved 12 March 2011.
  17. "Links". FLAC. Retrieved 24 March 2009.
  18. EBU: What is the EBU Musipop system?
  19. "Audio snobs rejoice: Windows 10 will have system-wide FLAC support". Retrieved 2015-07-10.
  20. "Android Supported Media Formats". Andro Med Formats. 4 August 2011. Retrieved 27 February 2012.
  21. "Issue 1461 – android – FLAC file support enhancement request.". Google. Retrieved 5 August 2011.
  22. "ponomusic.com FAQ". 14 March 2014. Retrieved 14 March 2014.
  23. "Qobuz.com". Retrieved 10 April 2014.
  24. "Why won't my tracks upload?". Bandcamp. Retrieved 21 June 2015.
  25. Devore, Jordan (2014-01-31). "How nice: GOG.com adds 31 FLAC soundtracks". Destructoid. Retrieved 2014-06-17. One of my favorite features of GOG.com is its inclusion of bonuses at no additional charge [...] Going a step further this week, GOG.com has added 31 FLAC-encoded soundtracks to games like Another World, Darklands, Earthworm Jim, Heroes of Might and Magic, MDK 2, Neverwinter Nights 2, Shadow Warrior, and The Witcher.
  26. Rillke (2015). "JavaScript FLAC de- and encoder". Retrieved 2015-02-09.
Wikimedia Commons has media related to Free Lossless Audio Codec.
This article is issued from Wikipedia - version of the 11/27/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.