Proton ATPase

hydrogen-exporting ATPase, phosphorylative mechanism
Identifiers
EC number 3.6.3.6
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO
Identifiers
Symbol E1-E2_ATPase
Pfam PF00122
InterPro IPR000695
PROSITE PDOC00139
TCDB 3.A.3.3
OPM protein 3b8c
This article is about the P-type H+
-ATPase found in plants and fungi. For the gastric H+
/K+
ATPase (involved in the acidification of the stomach in mammals), see Hydrogen potassium ATPase.

In the field of enzymology, the proton-ATPase (EC 3.6.3.6) is an enzyme that catalyzes the following chemical reaction:

ATP + H
2
O
+ H+
in ADP + phosphate + H+
out

The 3 substrates of this enzyme are ATP, H
2
O
, and H+
, whereas its 3 products are ADP, phosphate, and H+
.

This enzyme belongs to the family of hydrolases, specifically those acting on acid anhydrides to catalyse transmembrane movement of substances. To be specific, the protein is a part of the P-type ATPase family. The systematic name of this enzyme class is ATP phosphohydrolase (H+
-exporting)
.

H+
-exporting ATPase
is also known as proton ATPase or more simply proton pump. Other names in common use include proton-translocating ATPase, yeast plasma membrane H+
-ATPase
, yeast plasma membrane ATPase, and ATP phosphohydrolase.

Function and location

The H+
-ATPase or proton pump creates the electrochemical gradients in the plasma membrane of plants, fungi, protists, and many prokaryotes. Here, proton gradients are used to drive secondary transport processes. As such, it is essential for the uptake of most metabolites, and also for plant responses to the environment (e.g., movement of leaves).

It is interesting to note that H+
-ATPases are specific for plants, fungi, and protists; and Na+
/K+
-ATPases
are specific for animal cells. These two groups of P-type ATPases, although not from the same subfamily, seem to perform a complementary function in plants/fungi/protists and animal cells, namely the creation of an electrochemical gradient used as an energy source for secondary transport.

Structural studies

Proton ATPase AHA2 (3b8c)

Structural information on P-type proton ATPases are scarce compared to that obtained for SERCA1a. A low resolution structure from 2D crystals of the plasma membrane (PM) H+
-ATPase from Neurospora crassa is, as of medio 2011, the only structural information on the fungal H+
-ATPase.[1] For the plant counterpart, a crystal structure of the AHA2 PM H+
-ATPase from Arabidopsis thaliana has been obtained from 3D crystals with a resolution of 3.6 Å.[2] The structure of AHA2 clearly identifies three cytosolic domains corresponding to the N (nucleotide binding), P (phosphorylation), and A (actuator) domains, similar to those observed in the SR Ca2+
-ATPase
and also verifies the presence of ten transmembrane helices. The 3D crystal structure shows the AHA2 PM H+
-ATPase in a so-called quasi-occluded E1 state with the non-hydrolysable ATP analogue AMPPCP bound, and the overall fold of the catalytic unit reveals a high degree of structural similarity to the SR Ca2+
-ATPase
and the Na+
,K+
-ATPase
. The overall arrangement of the domains is similar to that observed for the occluded E1 conformation of the SR Ca2+
-ATPase
, and based on comparison with structural data for the other conformations of the SR Ca2+
-ATPase
, it was suggested that the structure of the AHA2 PM H+
-ATPase represents a novel E1 intermediate.[2] A distinct feature of the PM H+
-ATPase not observed in other P-type ATPases is the presence of a large cavity in the transmembrane domain formed by M4, M5 and M6.

Regulation

Precise regulation of PM H+
-ATPase activity is crucial to the plant. Over-expression of the PM H+
-ATPase is compensated by a down-regulation of activity,[3] whereas deletion of an isoform is compensated by redundancy as well as augmented activity of other isoforms by increased level of post-translational modifications.[4] The PM H+
-ATPase is subject to autoinhibition, which negatively regulates the activity of the pump and keeps the enzyme in a low activity state where ATP hydrolytic activity is partly uncoupled from ATP hydrolysis,.[5][6] Release from the autoinhibitory restraints requires posttranslational modifications such as phosphorylation and interacting proteins. Autoinhibition is achieved by the N- and C-termini of the protein - communication between the two termini facilitates the necessary precise control of pump activity.[7] The autoinhibitory C-terminal domain can be displaced by phosphorylation of the penultimate Thr residue and the subsequent binding of 14-3-3 proteins.[8] The PM H+
-ATPase is the first P-type ATPase for which both termini have been demonstrated to take part in the regulation of protein activity.[7]

Physiological roles in plants

Plasma membrane H+
-ATPases are found throughout the plant in all cell types investigated, but some cell types have much higher concentrations of H+
-ATPase than others. In general, these cell types are specialised for intensive active transport and accumulate solutes from their surroundings. Most studies of these roles come from genetic studies on Arabidopsis thaliana.[9] H+
-ATPases in plants are expressed from a multigene subfamily, and Arabidopsis thaliana for instance, have 12 different H+
-ATPase genes.

Some important physiological processes the plant H+
-ATPase is involved in are:

References

  1. Auer M, Scarborough GA, Kühlbrandt W (April 1998). "Three-dimensional map of the plasma membrane H+
    -ATPase in the open conformation". Nature. 392 (6678): 840–3. doi:10.1038/33967. PMID 9572146.
  2. 1 2 Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissen P (December 2007). "Crystal structure of the plasma membrane proton pump". Nature. 450 (7172): 1111–4. doi:10.1038/nature06417. PMID 18075595.
  3. Gévaudant F, Duby G, von Stedingk E, Zhao R, Morsomme P, Boutry M (August 2007). "Expression of a constitutively activated plasma membrane H+
    -ATPase alters plant development and increases salt tolerance"
    . Plant Physiol. 144 (4): 1763–76. doi:10.1104/pp.107.103762. PMC 1949876Freely accessible. PMID 17600134.
  4. Haruta M, Burch HL, Nelson RB, et al. (June 2010). "Molecular characterization of mutant Arabidopsis plants with reduced plasma membrane proton pump activity". J. Biol. Chem. 285 (23): 17918–29. doi:10.1074/jbc.M110.101733. PMC 2878554Freely accessible. PMID 20348108.
  5. Palmgren MG, Sommarin M, Serrano R, Larsson C (October 1991). "Identification of an autoinhibitory domain in the C-terminal region of the plant plasma membrane H+
    -ATPase"
    . J. Biol. Chem. 266 (30): 20470–5. PMID 1834646.
  6. Morsomme P, de Kerchove d'Exaerde A, De Meester S, Thinès D, Goffeau A, Boutry M (October 1996). "Single point mutations in various domains of a plant plasma membrane H+
    -ATPase expressed in Saccharomyces cerevisiae increase H+
    -pumping and permit yeast growth at low pH"
    . EMBO J. 15 (20): 5513–26. PMC 452296Freely accessible. PMID 8896445.
  7. 1 2 Ekberg K, Palmgren MG, Veierskov B, Buch-Pedersen MJ (March 2010). "A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein". J. Biol. Chem. 285 (10): 7344–50. doi:10.1074/jbc.M109.096123. PMC 2844182Freely accessible. PMID 20068040.
  8. Svennelid F, Olsson A, Piotrowski M, et al. (December 1999). "Phosphorylation of Thr-948 at the C terminus of the plasma membrane H+
    -ATPase creates a binding site for the regulatory 14-3-3 protein"
    . Plant Cell. 11 (12): 2379–91. doi:10.2307/3870962. PMC 144135Freely accessible. PMID 10590165.
  9. Palmgren MG (June 2001). "PLANT PLASMA MEMBRANE H+
    -ATPases: Powerhouses for Nutrient Uptake". Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 817–845. doi:10.1146/annurev.arplant.52.1.817. PMID 11337417.
This article is issued from Wikipedia - version of the 5/25/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.