Regular octagram

A regular octagram
Type Regular star polygon
Edges and vertices 8
Schläfli symbol {8/3}
Coxeter diagram
Symmetry group Dihedral (D8)
Internal angle (degrees) 45°
Dual polygon self
Properties star, cyclic, equilateral, isogonal, isotoxal

In geometry, an octagram is an eight-angled star polygon.

The name octagram combine a Greek numeral prefix, octa-, with the Greek suffix -gram. The -gram suffix derives from γραμμή (grammḗ) meaning "line".[1]


In general, an octagram is any self-intersecting octagon (8-sided polygon).

The regular octagram is labeled by the Schläfli symbol {8/3}, which means an 8-sided star, connected by every third point.


These variations have a lower dihedral, Dih4, symmetry:


(45 degree rotation)


An old Flag of Chile contained this octagonal star geometry with edges removed.

The geometry can be adjusted so 3 edges cross at a single point, like the Auseklis symbol

An 8-point compass rose can be seen as an octagonal star, with 4 primary points, and 4 secondary points.

The symbol Rub el Hizb is a Unicode glyph ۞  at U+06DE.

As a quasitruncated square

Deeper truncations of the square can produce isogonal (vertex-transitive) intermediate star polygon forms with equal spaced vertices and two edge lengths. A truncated square is an octagon, t{4}={8}. A quasitruncated square, inverted as {4/3}, is an octagram, t{4/3}={8/3}.[2]

The uniform star polyhedron stellated truncated hexahedron, t'{4,3}=t{4/3,3} has octagram faces constructed from the cube in this way.

Isogonal truncations of square and cube
Regular Quasiregular Isogonal Quasiregular



Regular Uniform Isogonal Uniform




Star polygon compounds

There are two regular octagrammic star figures (compounds) of the form {8/k}, the first constructed as two squares {8/2}=2{4}, and second as four degenerate digons, {8/4}=4{2}. There are other isogonal and isotoxal compounds including rectangular and rhombic forms.

Regular Isogonal Isotoxal



Other presentations of an octagonal star

An octagonal star can be seen as a concave hexadecagon, with internal intersecting geometry erased. It can also be dissected by radial lines.


See also

Stars generally


  1. γραμμή, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
  2. The Lighter Side of Mathematics: Proceedings of the Eugène Strens Memorial Conference on Recreational Mathematics and its History, (1994), Metamorphoses of polygons, Branko Grünbaum

This article is issued from Wikipedia - version of the 11/22/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.