Pentakis dodecahedron
Pentakis dodecahedron | |
---|---|
(Click here for rotating model) | |
Type | Catalan solid |
Coxeter diagram | |
Conway notation | kD |
Face type | V5.6.6 isosceles triangle |
Faces | 60 |
Edges | 90 |
Vertices | 32 |
Vertices by type | 20{6}+12{5} |
Symmetry group | Ih, H3, [5,3], (*532) |
Rotation group | I, [5,3]+, (532) |
Dihedral angle | 156°43′07″ arccos(−80 + 9√5/109) |
Properties | convex, face-transitive |
Truncated icosahedron (dual polyhedron) |
Net |
In geometry, a pentakis dodecahedron or kisdodecahedron is a dodecahedron with a pentagonal pyramid covering each face; that is, it is the Kleetope of the dodecahedron. This interpretation is expressed in its name.[1] There are in fact several topologically equivalent but geometrically distinct kinds of pentakis dodecahedron, depending on the height of the pentagonal pyramids. These include:
- The usual Catalan pentakis dodecahedron, a convex hexecontahedron with sixty isosceles triangular faces illustrated in the sidebar figure. It is a Catalan solid, dual to the truncated icosahedron, an Archimedean solid.
- As the heights of the pentagonal pyramids are raised, at a certain point adjoining pairs of triangular faces merge to become rhombi, and the shape becomes a rhombic triacontahedron.
- As the height is raised further, the shape becomes non-convex. In particular, an equilateral or deltahedron version of the pentakis dodecahedron, which has sixty equilateral triangular faces as shown in the adjoining figure, is slightly non-convex due to its taller pyramids (note, for example, the negative dihedral angle at the upper left of the figure).
Other more non-convex geometric variants include:
- The small stellated dodecahedron (with very tall pyramids).
- Great pentakis dodecahedron (with extremely tall pyramids)
- Wenninger's third stellation of icosahedron (with inverted pyramids).
If one affixes pentagrammic pyramids into Wenninger's third stellation of icosahedron one obtains the great icosahedron.
Chemistry
The pentakis dodecahedron in a model of buckminsterfullerene: each surface segment represents a carbon atom. Equivalently, a truncated icosahedron is a model of buckminsterfullerene, with each vertex representing a carbon atom.
Biology
The pentakis dodecahedron is also a model of some icosahedrally symmetric viruses, such as Adeno-associated virus. These have 60 symmetry related capsid proteins, which combine to make the 60 symmetrical faces of a pentakis dodecahedron.
Orthogonal projections
The pentakis dodecahedron has three symmetry positions, two on vertices, and one on a midedge:
Projective symmetry |
[2] | [6] | [10] |
---|---|---|---|
Image | |||
Dual image |
Related polyhedra
Family of uniform icosahedral polyhedra | |||||||
---|---|---|---|---|---|---|---|
Symmetry: [5,3], (*532) | [5,3]+, (532) | ||||||
{5,3} | t{5,3} | r{5,3} | t{3,5} | {3,5} | rr{5,3} | tr{5,3} | sr{5,3} |
Duals to uniform polyhedra | |||||||
V5.5.5 | V3.10.10 | V3.5.3.5 | V5.6.6 | V3.3.3.3.3 | V3.4.5.4 | V4.6.10 | V3.3.3.3.5 |
*n32 symmetry mutation of truncated tilings: n.6.6 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sym. *n42 [n,3] |
Spherical | Euclid. | Compact | Parac. | Noncompact hyperbolic | |||||||
*232 [2,3] |
*332 [3,3] |
*432 [4,3] |
*532 [5,3] |
*632 [6,3] |
*732 [7,3] |
*832 [8,3]... |
*∞32 [∞,3] |
[12i,3] | [9i,3] | [6i,3] | ||
Truncated figures |
||||||||||||
Config. | 2.6.6 | 3.6.6 | 4.6.6 | 5.6.6 | 6.6.6 | 7.6.6 | 8.6.6 | ∞.6.6 | 12i.6.6 | 9i.6.6 | 6i.6.6 | |
n-kis figures |
||||||||||||
Config. | V2.6.6 | V3.6.6 | V4.6.6 | V5.6.6 | V6.6.6 | V7.6.6 | V8.6.6 | V∞.6.6 | V12i.6.6 | V9i.6.6 | V6i.6.6 |
Cultural references
- The Spaceship Earth structure at Walt Disney World's Epcot is a derivative of a pentakis dodecahedron.
- The model for a campus arts workshop designed by Jeffrey Lindsay was actually a hemispherical pentakis dodecahedron https://books.google.com/books?id=JD8EAAAAMBAJ&pg=PA92&dq=jeffrey+lindsay&hl=en&ei=oF88Tv25F7OisQLGwbwt&sa=X&oi=book_result&ct=result&redir_esc=y#v=onepage&q=jeffrey%20lindsay&f=false
- The shape of the "Crystal Dome" used in the popular TV game show The Crystal Maze was based on a pentakis dodecahedron.
- In Doctor Atomic, the shape of the first atomic bomb detonated in New Mexico was a pentakis dodecahedron.
- In De Blob 2 in the Prison Zoo, domes are made up of parts of a Pentakis Dodecahedron. These Domes also appear whenever the player transforms on a dome in the Hypno Ray level.
- Some Geodomes in which people play on are Pentakis Dodecahedra.
References
- ↑ Conway, Symmetries of things, p.284
- Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X. (Section 3-9)
- Sellars, Peter (2005). "Doctor Atomic Libretto". Boosey & Hawkes.
We surround the plutonium core from thirty two points spaced equally around its surface, the thirty-two points are the centers of the twenty triangular faces of an icosahedron interwoven with the twelve pentagonal faces of a dodecahedron.
- Wenninger, Magnus (1983). Dual Models. Cambridge University Press. ISBN 978-0-521-54325-5. MR 730208. (The thirteen semiregular convex polyhedra and their duals, Page 18, Pentakisdodecahedron)
- The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, page 284, Pentakis dodecahedron )
External links
- Eric W. Weisstein, Pentakis dodecahedron (Catalan solid) at MathWorld.
- Pentakis Dodecahedron – Interactive Polyhedron Model